1,680 research outputs found

    Flexible Graph-based Learning with Applications to Genetic Data Analysis

    Get PDF
    With the abundance of increasingly complex and high dimensional data in many scientific disciplines, graphical models have become an extremely useful statistical tool to explore data structures. In this dissertation, we study graphical models from two perspectives: i) to enhance supervised learning, classification in particular, and ii) graphical model estimation for specific data types. For classification, the optimal classifier is often connected with the feature structure within each class. In the first project, starting from the Gaussian population scenario, we aim to find an approach to utilize the graphical structure information of the features in classification. With respect to graphical models, many existing graphical estimation methods have been proposed based on a homogeneous Gaussian population. Due to the Gaussian assumption, these methods may not be suitable for many typical genetic data. For instance, the gene expression data may come from individuals of multiple populations with possibly distinct graphical structures. Another instance would be the single cell RNA-sequencing data, which are featured by substantial sample dependence and zero-inflation. In the second and the third project, we propose multiple graphical model estimation methods for these scenarios respectively. In particular, two dependent count-data graphical models are introduced for the latter case. Both numerical and theoretical studies are performed to demonstrate the effectiveness of these methods.Doctor of Philosoph

    Clustering as an Evaluation Protocol for Knowledge Embedding Representation of Categorised Multi-relational Data in the Clinical Domain

    Full text link
    Learning knowledge representation is an increasingly important technology applicable in many domain-specific machine learning problems. We discuss the effectiveness of traditional Link Prediction or Knowledge Graph Completion evaluation protocol when embedding knowledge representation for categorised multi-relational data in the clinical domain. Link prediction uses to split the data into training and evaluation subsets, leading to loss of information along training and harming the knowledge representation model accuracy. We propose a Clustering Evaluation Protocol as a replacement alternative to the traditionally used evaluation tasks. We used embedding models trained by a knowledge embedding approach which has been evaluated with clinical datasets. Experimental results with Pearson and Spearman correlations show strong evidence that the novel proposed evaluation protocol is pottentially able to replace link prediction

    Electroosmotic Flow of Viscoelastic Fluid Through a Constriction Microchannel

    Get PDF
    Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for a fixed PAA concentration (electric field), and vortices form at the upstream of the constriction. EOF velocity of viscoelastic fluid becomes spatially and temporally dependent, and the velocity at the exit of the constriction microchannel is much higher than that at its entrance, which is in qualitative agreement with experimental observation from the literature. Under the same apparent viscosity, the time-averaged velocity of the viscoelastic fluid is lower than that of the Newtonian fluid

    Accelerating Deep Reinforcement Learning With the Aid of Partial Model: Energy-Efficient Predictive Video Streaming

    Full text link
    Predictive power allocation is conceived for energy-efficient video streaming over mobile networks using deep reinforcement learning. The goal is to minimize the accumulated energy consumption of each base station over a complete video streaming session under the constraint that avoids video playback interruptions. To handle the continuous state and action spaces, we resort to deep deterministic policy gradient (DDPG) algorithm for solving the formulated problem. In contrast to previous predictive power allocation policies that first predict future information with historical data and then optimize the power allocation based on the predicted information, the proposed policy operates in an on-line and end-to-end manner. By judiciously designing the action and state that only depend on slowly-varying average channel gains, we reduce the signaling overhead between the edge server and the base stations, and make it easier to learn a good policy. To further avoid playback interruption throughout the learning process and improve the convergence speed, we exploit the partially known model of the system dynamics by integrating the concepts of safety layer, post-decision state, and virtual experiences into the basic DDPG algorithm. Our simulation results show that the proposed policies converge to the optimal policy that is derived based on perfect large-scale channel prediction and outperform the first-predict-then-optimize policy in the presence of prediction errors. By harnessing the partially known model, the convergence speed can be dramatically improved

    Cardiac Specific Overexpression of Mitochondrial Omi/HtrA2 Induces Myocardial Apoptosis and Cardiac Dysfunction.

    Get PDF
    Myocardial apoptosis is a significant problem underlying ischemic heart disease. We previously reported significantly elevated expression of cytoplasmic Omi/HtrA2, triggers cardiomyocytes apoptosis. However, whether increased Omi/HtrA2 within mitochondria itself influences myocardial survival in vivo is unknown. We aim to observe the effects of mitochondria-specific, not cytoplasmic, Omi/HtrA2 on myocardial apoptosis and cardiac function. Transgenic mice overexpressing cardiac-specific mitochondrial Omi/HtrA2 were generated and they had increased myocardial apoptosis, decreased systolic and diastolic function, and decreased left ventricular remodeling. Transiently or stably overexpression of mitochondria Omi/HtrA2 in H9C2 cells enhance apoptosis as evidenced by elevated caspase-3, -9 activity and TUNEL staining, which was completely blocked by Ucf-101, a specific Omi/HtrA2 inhibitor. Mechanistic studies revealed mitochondrial Omi/HtrA2 overexpression degraded the mitochondrial anti-apoptotic protein HAX-1, an effect attenuated by Ucf-101. Additionally, transfected cells overexpressing mitochondrial Omi/HtrA2 were more sensitive to hypoxia and reoxygenation (H/R) induced apoptosis. Cyclosporine A (CsA), a mitochondrial permeability transition inhibitor, blocked translocation of Omi/HtrA2 from mitochondrial to cytoplasm, and protected transfected cells incompletely against H/R-induced caspase-3 activation. We report in vitro and in vivo overexpression of mitochondrial Omi/HtrA2 induces cardiac apoptosis and dysfunction. Thus, strategies to directly inhibit Omi/HtrA2 or its cytosolic translocation from mitochondria may protect against heart injury

    Impacts of FDI Renewable Energy Technology Spillover on China's Energy Industry Performance

    Get PDF
    Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI) in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA) are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China
    corecore