1,535 research outputs found

    A General Generalization of Jordan's Inequality and a Refinement of L. Yang's Inequality

    Get PDF

    A note on qq-partial difference equations and some applications to generating functions and qq-integrals

    Get PDF
    summary:We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan qq-beta integrals. At last, we derive U(n+1)U(n+1) type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials

    Technological learning in six firms in Southern China: success and limits of an industrialisation model

    Get PDF
    This article examines the creation of industrial enterprises and the basic models of firm-level technological learning behaviour of the last 20 years in China. Six case studies of technological learning and links to external sources of know-how from the South of China in the Pearl River Delta are examined. It is shown that the learning process that has been experienced in these enterprises is similar to that of other fast growing East Asian economies. Until now enterprises have been acquiring technology through external linkages with foreign clients that become their main providers of technology. A detailed account of the enterprises allows a typology of the external technological learning. It is claimed that the growth of the South China lies in this ‘external’ interactive technological learning, as in other East Asian economies.Asia; China; industrial development; technological learning; private enterprises; interactive learning; economic reform

    Experimental Research on Passive Control of Steel Frame Structure Using SMA Wires

    Get PDF
    Mechanical properties of shape memory alloy (SMA) wires were experimentally researched in this paper, and an energy dissipater made of SMA wire cable was designed and applied in a steel frame structure model by using superelasticity characteristics of SMAs to passively reduce dynamic responses of the steel frame structure under seismic load. For the characteristics of large relative displacements between the stories of the steel frame structure on both diagonal ends and the consideration of initial prestrain effects of the SMA cables, three kinds of the whole control, the part control, and no control of the shaking table tests and numerical simulations were carried, respectively. Through the results of the shaking table test and numerical simulation analysis, the dynamic responses such as the maximum displacement, velocity, and acceleration at the top layer of the steel frame structure applied with SMA cables are significantly decreased compared with the no control case. However, considering the premise of both effectiveness and efficiency, the part control effect is superior to the whole control. In many cases, it can meet the control requirement of reducing the maximum displacement and acceleration, while the superelasticity of SMAs can be sufficiently played, realizing the passive control purposes of the steel frame structure based on the energy dispassion through the application of the SMA cables. The proposed method has broad application prospects in the passive control field of building structures

    Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy

    Get PDF
    The combination of different therapies into a single platform has attracted increasing attention as a potential synergistic tumor treatment. Herein, the fabrication of a novel folate targeted system for chemo-photothermal therapy by using thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs) as a drug-loading vehicle is described. The novel targeted molecular bovine serum albumin-folic acid-modified MoS2 sheets (MoS2-PEI-BSA-FA) were successfully synthesized and characterized, and then utilized as a capping agent to block PMOs to control the drug release and to investigate their potential in near-infrared photothermal therapy. The resulting PMOs–DOX@MoS2–PEI-BSA-FA complexes had a uniform diameter (196 nm); high DOX loading capacity (185 mg/g PMOs-SH); excellent photothermal transformation ability; and good biocompatibility in physiological conditions. The PMOs–DOX@MoS2–PEI-BSA-FA exhibited pH-dependence and near infrared (NIR) laser irradiation-triggered DOX release. In vitro experimental results confirmed that the material exhibits excellent photothermal transfer ability, outstanding tumor killing efficiency and specificity to target tumor cells via an FA-receptor-mediated endocytosis process. The in vivo experiments further demonstrated that the platform for synergistic chemo-photothermal therapy could significantly inhibit tumor growth, which is superior to any monotherapy. Meanwhile, cytotoxicity assays and histological assessments show that the engineered PMOs@MoS2–PEI-BSA-FA have good biocompatibility, further inspiring potential biomedical applications. Overall, this work describes an excellent drug delivery system for chemo-photothermal synergistic targeted therapy having good drug release properties, which have great potential in cancer therapy
    • …
    corecore