1,511 research outputs found

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM

    Differential measurement of atmospheric refraction with a telescope with double fields of view

    Full text link
    For the sake of complete theoretical research of atmospheric refraction, the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. In some engineering applications, the objects with larger zenith distance must be observed sometimes. Carrying out observational research of the atmospheric refraction at lower angles of elevation has an important significance. It has been considered difficult to measure the atmospheric refraction at lower angles of elevation. A new idea for determining atmospheric refraction by utilizing differential measurement with double fields of view is proposed. Taking the observational principle of HIPPARCOS satellite as a reference, a schematic prototype with double fields of view was developed. In August of 2013, experimental observations were carried out and the atmospheric refractions at lower angles of elevation can be obtained by the schematic prototype. The measured value of the atmospheric refraction at the zenith distance of 78.8 degree is 240.23"Β±0.27"240.23"\pm0.27", and the feasibility of differential measurement of atmospheric refraction with double fields of view was justified. The limitations of the schematic prototype such as inadequate ability of gathering light, lack of accurate meteorological data recording and lower automatic level of observation and data processing were also pointed out, which need to be improved in subsequent work.Comment: 10 pages, 6 figure

    Robust arbitrary-view gait recognition based on 3D partial similarity matching

    Get PDF
    Existing view-invariant gait recognition methods encounter difficulties due to limited number of available gait views and varying conditions during training. This paper proposes gait partial similarity matching that assumes a 3-dimensional (3D) object shares common view surfaces in significantly different views. Detecting such surfaces aids the extraction of gait features from multiple views. 3D parametric body models are morphed by pose and shape deformation from a template model using 2-dimensional (2D) gait silhouette as observation. The gait pose is estimated by a level set energy cost function from silhouettes including incomplete ones. Body shape deformation is achieved via Laplacian deformation energy function associated with inpainting gait silhouettes. Partial gait silhouettes in different views are extracted by gait partial region of interest elements selection and re-projected onto 2D space to construct partial gait energy images. A synthetic database with destination views and multi-linear subspace classifier fused with majority voting are used to achieve arbitrary view gait recognition that is robust to varying conditions. Experimental results on CMU, CASIA B, TUM-IITKGP, AVAMVG and KY4D datasets show the efficacy of the propose method

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    Using Jackknife to Assess the Quality of Gene Order Phylogenies

    Get PDF
    Background In recent years, gene order data has attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. If gene orders are viewed as one character with a large number of states, traditional bootstrap procedures cannot be applied. Researchers began to use a jackknife resampling method to assess the quality of gene order phylogenies. Results In this paper, we design and conduct a set of experiments to validate the performance of this jackknife procedure and provide discussions on how to conduct it properly. Our results show that jackknife is very useful to determine the confidence level of a phylogeny obtained from gene orders and a jackknife rate of 40% should be used. However, although a branch with support value of 85% can be trusted, low support branches require careful investigation before being discarded. Conclusions Our experiments show that jackknife is indeed necessary and useful for gene order data, yet some caution should be taken when the results are interpreted

    Abnormal Gait Behavior Detection for Elderly Based on Enhanced Wigner-Ville Analysis and Cloud Incremental SVM Learning

    Get PDF
    A cloud based health care system is proposed in this paper for the elderly by providing abnormal gait behavior detection, classification, online diagnosis, and remote aid service. Intelligent mobile terminals with triaxial acceleration sensor embedded are used to capture the movement and ambulation information of elderly. The collected signals are first enhanced by a Kalman filter. And the magnitude of signal vector features is then extracted and decomposed into a linear combination of enhanced Gabor atoms. The Wigner-Ville analysis method is introduced and the problem is studied by joint time-frequency analysis. In order to solve the large-scale abnormal behavior data lacking problem in training process, a cloud based incremental SVM (CI-SVM) learning method is proposed. The original abnormal behavior data are first used to get the initial SVM classifier. And the larger abnormal behavior data of elderly collected by mobile devices are then gathered in cloud platform to conduct incremental training and get the new SVM classifier. By the CI-SVM learning method, the knowledge of SVM classifier could be accumulated due to the dynamic incremental learning. Experimental results demonstrate that the proposed method is feasible and can be applied to aged care, emergency aid, and related fields

    Dynamic Alignment Mask CTC: Improved Mask-CTC with Aligned Cross Entropy

    Full text link
    Because of predicting all the target tokens in parallel, the non-autoregressive models greatly improve the decoding efficiency of speech recognition compared with traditional autoregressive models. In this work, we present dynamic alignment Mask CTC, introducing two methods: (1) Aligned Cross Entropy (AXE), finding the monotonic alignment that minimizes the cross-entropy loss through dynamic programming, (2) Dynamic Rectification, creating new training samples by replacing some masks with model predicted tokens. The AXE ignores the absolute position alignment between prediction and ground truth sentence and focuses on tokens matching in relative order. The dynamic rectification method makes the model capable of simulating the non-mask but possible wrong tokens, even if they have high confidence. Our experiments on WSJ dataset demonstrated that not only AXE loss but also the rectification method could improve the WER performance of Mask CTC.Comment: Accepted by ICASSP 202

    Gene Order Phylogeny and the Evolution of Methanogens

    Get PDF
    Methanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, β€œClass I” and β€œClass II”. However, some deep relationships were not resolved. For instance, the monophyly of β€œClass I” methanogens, which consist of Methanopyrales, Methanobacteriales and Methanococcales, is disputable due to weak statistical support. In this study, we use MSOAR to identify common orthologous genes from eight methanogen species and a Thermococcale species (outgroup), and apply GRAPPA and FastME to compute distance-based gene order phylogeny. The gene order phylogeny supports two classes of methanogens, but it differs from the original classification of methanogens by placing Methanopyrales and Methanobacteriales together with Methanosarcinales in Class II rather than with Methanococcales. This study suggests a new classification scheme for methanogens. In addition, it indicates that gene order phylogeny can complement traditional sequence-based methods in addressing taxonomic questions for deep relationships
    • …
    corecore