277 research outputs found

    A new potential radiosensitizer: ammonium persulfate modified WCNTs

    Get PDF
    Radiotherapy plays a very important role in cancer treatment. Radiosensitizers have been widely used to enhance the radiosensitivity of cancer cells at given radiations. Here we fabricate multi-walled carbon nanotubes with ammonium persulfate, and get very short samples with 30-50 nanometer length. Cell viability assay show that f-WCNTs induce cell death significantly. We hypothesize that free radicals originated from hydroxyl and carbonyl groups on the surface of f-WCNTs lead cell damage

    Chaotic Bayesian optimal prediction method and its application in hydrological time series

    Get PDF
    AbstractThe embedding dimension and the number of nearest neighbors are very important parameters in the prediction of chaotic time series. To reduce the prediction errors and the uncertainties in the determination of the above parameters, a new chaos Bayesian optimal prediction method (CBOPM) is proposed by choosing optimal parameters in the local linear prediction method (LLPM) and improving the prediction accuracy with Bayesian theory. In the new method, the embedding dimension and the number of nearest neighbors are combined as a parameter set. The optimal parameters are selected by mean relative error (MRE) and correlation coefficient (CC) indices according to optimization criteria. Real hydrological time series are taken to examine the new method. The prediction results indicate that CBOPM can choose the optimal parameters adaptively in the prediction process. Compared with several LLPM models, the CBOPM has higher prediction accuracy in predicting hydrological time series

    Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs

    Get PDF
    Little is known about the distribution and ecological functions of abundant, intermediate, and rare biospheres and their correlations with environmental factors in hot springs. Here, we explored the microbial community composition of total, abundant, intermediate, and rare biospheres in 66 Tibetan hot springs (pairwise geographic distance 0–610 km, temperature 32–86°C, pH 3.0–9.5, and salinity 0.13–1.32 g/L) with the use of Illumina MiSeq high-throughput sequencing. The results showed that the abundant sub-communities were mainly composed of Chloroflexi, Proteobacteria, Deinococcus-Thermus, Aquificae, Bacteroidetes, and Firmicutes. In contrast, the rare sub-communities mainly consisted of most newly proposed or candidate phyla of Dictyoglomi, Hydrogenedentes, Atribacteria, Hadesarchaea, Aminicenantes, Microgenomates, Calescamantes, Omnitrophica, Altiarchaeales, and Chlamydiae. However, the abundant and rare sub-communities shared some common phyla (e.g., Crenarchaeota, Bathyarchaeota, and Chlorobi), which were composed of different OTUs. The abundant, intermediate, and rare sub-communities were mainly influenced by different environmental variables, which could be ascribed to the fact that they may have different growth and activity and thus respond differently to these variables. Spatial factors showed more contribution to shaping of the intermediate and rare communities than to abundant sub-community, suggesting that the abundant taxa were more easily dispersed than their rare counterparts among hot springs. Microbial ecological function prediction revealed that the abundant and rare sub-communities responded differently to the measured environmental factors, suggesting they may occupy different ecological niches in hot springs. The rare sub-communities may play more important roles in organic matter degradation than their abundant counterparts in hot springs. Collectively, this study provides a better understanding on the microbial community structure and potential ecological functions of the abundant and rare biospheres in hot spring ecosystems. The identified rare taxa provide new opportunities of ecological, taxonomic and genomic discoveries in Tibetan hot springs

    Molecular cloning and characterization of the mouse Acdp gene family

    Get PDF
    BACKGROUND: We have recently cloned and characterized a novel gene family named ancient conserved domain protein (ACDP) in humans. To facilitate the functional study of this novel gene family, we have cloned and characterized Acdp, the mouse homologue of the human ACDP gene family. RESULTS: The four Acdp genes (Acdp1, Acdp2, Acdp3 and Acdp4) contain 3,631 bp, 3,244 bp, 2,684 bp and 2,743 bp of cDNA sequences, and encode deduced proteins of 951, 874, 713 and 771 amino acids, respectively. The mouse Acdp genes showed very strong homologies (>90%) in both nucleotide and amino acid sequences to their human counterparts. In addition, both nucleotide and amino acid sequences within the Ancient Conserved Domain (ACD) are highly conserved in many different taxonomic species. Particularly, Acdp proteins showed very strong AA homologies to the bacteria CorC protein (35% AA identity with 55% homology), which is involved in magnesium and cobalt efflux. The Acdp genes are widely expressed in all tissues tested except for Acdp1, which is only highly expressed in the brain with low levels of expression in kidney and testis. Immunostaining of Acdp1 in hippocampus neurons revealed a predominant localization on the plasma membrane. CONCLUSION: The Acdp genes are evolutionarily conserved in diverse species and ubiquitously expressed throughout development and adult tissues suggesting that Acdp may be an essential gene. Acdp showed strong homology to bacteria CorC protein and predominantly localized on the plasma membrane. These results suggest that Acdp is probably a family of proteins involved in ion transport in mammalian cell

    Inference of drowning sites using bacterial composition and random forest algorithm

    Get PDF
    Diagnosing the drowning site is a major challenge in forensic practice, particularly when corpses are recovered from flowing rivers. Recently, forensic experts have focused on aquatic microorganisms, including bacteria, which can enter the bloodstream during drowning and may proliferate in corpses. The emergence of 16S ribosomal RNA gene (16S rDNA) amplicon sequencing has provided a new method for analyzing bacterial composition and has facilitated the development of forensic microbiology. We propose that 16S rDNA amplicon sequencing could be a useful tool for inferring drowning sites. Our study found significant differences in bacterial composition in different regions of the Guangzhou section of the Pearl River, which led to differences in bacteria of drowned rabbit lungs at different drowning sites. Using the genus level of bacteria in the lung tissue of drowned rabbits, we constructed a random forest model that accurately predicted the drowning site in a test set with 100% accuracy. Furthermore, we discovered that bacterial species endemic to the water were not always present in the corresponding drowned lung tissue. Our findings demonstrate the potential of a random forest model based on bacterial genus and composition in drowned lung tissues for inferring drowning sites

    Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi

    Get PDF
    In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 μM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by compound 6 is probably related to mitochondrial dysfunction. Additionally, the structure-activity relationships of these compounds are discussed

    Preparation of molecularly imprinted polymer for selective solid-phase extraction and simultaneous determination of five sulfonylurea herbicides in cereals

    Get PDF
    Molecular imprinting polymer (MIP) has been increasingly employed for sulfonylurea herbicides (SUHs) detection in different matrices. A novel MIP that was effective as a highly class-selective sorbent in molecularly imprinted solid-phase extraction (MISPE) was successfully prepared for isolation and purification of SUHs, namely, metsulfuron-methyl, chlorsulfuron, chlorimuron-ethyl, prosulfuron, and pyrazosulfuron-ethyl, in rice, corn and soybean samples. The MIP was synthesized by precipitation polymerization using metsulfuron-methyl as the template, 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and MeCN as the porogen. The polymerization system of the MIP was optimized, and its adsorption performances were evaluated by comparing its adsorption isotherms and adsorption kinetics with those of a non-imprinted polymer (NIP). Following MISPE for extracting and enriching SUHs from rice, corn and soybean samples, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed. Acceptable recoveries were observed at SUHs contaminant concentrations of 10, 20 and 40 μg/L: from 77.56 to 99.81%, with relative standard deviations of <13.8% (n = 5) for all samples. The limits of detection for the five SUHs were 0.21-0.26 μg/L. The results demonstrated that the proposed MISPE-HPLC-MS/MS method is an effective approach for the simultaneous and sensitive determination of the five SUHs in rice, corn and soybean samples

    Screening Level of PAHs in Sediment Core from Lake Hongfeng, Southwest China

    Get PDF
    Using data from a 25-year retrospective of polycyclic aromatic hydrocarbons (PAHs) in sediment core from Lake Hongfeng, Southwest China, their possible sources and potential toxicologic significance were investigated. The total PAH concentrations (16 priority PAHs as proposed by the United States Environmental Protection Agency) in sediments ranged from 2936.1 to 5282.3 ng/g and gradually increased from the analyzed deeper sediments to surface sediments. PAHs were dominated by low molecular-weight components, especially phenanthrene (PHEN) and fluorene (FLU). However, a significantly increased number of high molecular-weight (HMW) PAHs was found in upper segments. The temporal trends of individual PAH species suggest that there may have been a change in energy use from low- to high-temperature combustion, especially after approximately 2001. PAH input to Lake Hongfeng originated mainly from domestic coal combustion and biomass burning, whereas fuel combustion characteristics have also been found in recent years. Sediment-quality assessment implied that potential adverse biologic impact could be a probability for most low-ring PAHs (including naphthalene, acenaphthylene, acenaphthylene, FLU, PHEN, and anthracene). Nevertheless, more concern should be paid to HMW PAHs in the future due to their rapidly increasing trends in upper sediments. Because only one core was analyzed in this study, more work is needed to confirm the sources and toxicity of PAHs in Lake Hongfeng

    Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status

    Get PDF
    BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies
    corecore