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Diagnosing the drowning site is a major challenge in forensic practice, particularly 
when corpses are recovered from flowing rivers. Recently, forensic experts have 
focused on aquatic microorganisms, including bacteria, which can enter the 
bloodstream during drowning and may proliferate in corpses. The emergence of 
16S ribosomal RNA gene (16S rDNA) amplicon sequencing has provided a new 
method for analyzing bacterial composition and has facilitated the development 
of forensic microbiology. We  propose that 16S rDNA amplicon sequencing 
could be a useful tool for inferring drowning sites. Our study found significant 
differences in bacterial composition in different regions of the Guangzhou 
section of the Pearl River, which led to differences in bacteria of drowned rabbit 
lungs at different drowning sites. Using the genus level of bacteria in the lung 
tissue of drowned rabbits, we constructed a random forest model that accurately 
predicted the drowning site in a test set with 100% accuracy. Furthermore, 
we  discovered that bacterial species endemic to the water were not always 
present in the corresponding drowned lung tissue. Our findings demonstrate the 
potential of a random forest model based on bacterial genus and composition in 
drowned lung tissues for inferring drowning sites.
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1. Introduction

Drowning is a significant global cause of unnatural death (World Health Organization, 
2014). However, the body discovery site in water is often not the actual drowning site (Saini 
et al., 2017). Determining the precise drowning site is crucial in forensic investigations (Fang 
et al., 2019). During the drowning process, small objects such as planktonic microorganisms 
present in the water can be aspirated into the lungs along with water and then breach the 
pulmonary blood barrier and circulate through the aorta, reaching various major organs such 
as the liver, kidney, and bone marrow (Lee et al., 2017). Therefore, inferring the drowning site 
primarily involves analyzing whether the drowned victim’s organs contain the same specific 
markers as those found in the suspected drowning water (Siver et al., 1994; Coelho et al., 2016). 
These markers, used to infer the drowning site, are typically widespread and exhibit a specific 
distribution in drowning waters.
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Previous research has primarily focused on identifying 
markers such as foreign bodies, diatoms, and other plankton (He 
et al., 2008; Zhang et al., 2020; Seena et al., 2022). Foreign bodies 
are exogenous substances that are naturally present in water but 
typically absent or found in small amounts in the human body, 
such as small particle colonies containing silicon, aluminum, or 
calcium. Foreign bodies are usually specific to certain types of 
water, including sewage outlets of chemical plants, steel plants, 
and military factories. However, this method’s applicability is 
limited in cases where industrial discharge is unstable or absent. 
Diatoms are unicellular photoautotrophic algae widely distributed 
in water bodies, with an estimated species diversity of up to 
100,000 (Mann and Vanormelingen, 2013). The composition of 
diatom species in water is significantly influenced by the 
environment, exhibiting distinct regional characteristics (Thakar 
and Singh, 2010; Carballeira et al., 2018). Many researchers have 
devoted larger efforts to determining the drowning site by 
comparing the diatom groups between suspicious water samples 
and tissues of drowned corpses (Digerfeldt, 1987; Ludes et al., 
1999; Horton et  al., 2006). However, current diatom testing 
methods for forensic pathologists are laborious, time-consuming, 
and often require specialized knowledge. Additionally, the 
application of deep learning technology used for automatic 
diatom identification is still in its early stages, and practical 
implementation is not yet feasible (Zhang et  al., 2021). 
Furthermore, when the water lacks specific diatoms or the large 
volume of diatoms restricts their entry into the circulation of the 
drowned corpse, diatom tests play no role in inferring the 
drowning site (Alan and Sarah, 2012). Another potential marker 
is the ribulose-1,5-bisphosphate carboxylase large-chain gene 
(rbcL) in phytoplankton (Fang et  al., 2019). However, the 
usefulness of rbcL is limited by the presence of nonspecific 
products in the water sample that can interfere with the results.

Aquatic bacterial populations exhibit significant variations 
across different habitats, such as seawater, freshwater, and sewage, 
and they are much smaller in size (0.2 ~ 2 μm) than diatoms (2 to 
>500 μm) (Uchiyama et al., 2012). Additionally, bacteria outnumber 
diatoms by a large margin (Armbrust, 2009). Consequently, it is 
easier to retrieve aquatic bacteria from drowned corpses compared 
to diatoms (He et al., 2008). Researchers such as Kakizaki et al. have 
proposed the use of pyrosequencing microbiome analysis to 
examine drowned corpses and have reported the presence of an 
aquatic microbiome in the blood and closed organs of drowned 
individuals (Kakizaki et al., 2012). With advancements in second-
generation sequencing technology and improvements in 
bioinformatics (Bolyen et al., 2019), 16S rDNA amplicon sequencing 
has become a widely employed tool in forensic research. Its 
applications include drowning diagnosis (Wang et  al., 2020), 
forensic soil analysis (Jesmok et al., 2016), and postmortem time 
inference (Dong et al., 2019).

However, to the best of our knowledge, there have been no 
previous reports on the utilization of aquatic bacteria for inferring 
drowning sites. To explore the feasibility of using aquatic bacteria for 
this purpose, we  conducted a 16S rDNA amplicon sequencing 
analysis. The aim was to determine whether the drowned corpse 
exhibits the same aquatic bacterial composition and endemic aquatic 
bacteria as those found in the suspected drowning water area.

2. Materials and methods

2.1. Study sites and water samples

To investigate the distribution of aquatic bacteria in the 
Guangzhou section of the Pearl River, we  selected four random 
sampling locations (namely, W1–W4), as depicted in Figure 1. At each 
designated location, we employed autoclaved plastic bottles to collect 
a total of five water samples. Each sample, standardized at a volume of 
15 mL, was carefully extracted from a depth exceeding 30 cm beneath 
the river’s surface. The sampling process was conducted within a well-
defined and contiguous area measuring 100 cm × 100 cm, positioned 
at a distance of 150 cm away from the riverbank. Immediately after 
collection, the water samples were transported to the forensic 
laboratory. To enrich the aquatic bacteria, we filtered the samples 
using the HL-6 multiunit vacuum suction filter. The filter membranes 
used had a pore size of 0.22 μm. After filtration, the filter membranes 
were carefully placed in 50 mL sterile centrifuge tubes for further 
analysis. To preserve the samples, all collected samples were rapidly 
frozen in liquid nitrogen and stored at −80°C. Additionally, 50 L of 
water was collected at each sampling location within the same defined 
area for subsequent animal experiments, and all water samples were 
used within 24 h.

2.2. Animal experiments and tissue samples

Female New  Zealand rabbits, aged 3 months and weighing 
between 1.8 and 2.2 kg, were obtained from the Laboratory Animal 
Center of Southern Medical University (n = 24). At each sampling 
location, six rabbits were submerged in the respective water samples 
until they died. The drowned rabbits were then kept in separate water 
samples for 24 h before their lungs were removed. The drowned rabbit 
lungs from different sampling locations were labeled DL1, DL2, DL3, 
and DL4. After removal, the rabbit lungs were promptly frozen in 
liquid nitrogen and stored at −80°C. All animal experiments were 
conducted in accordance with the guidelines and regulations approved 
by the Animal Ethics Committee of Southern Medical University 
(L2020064).

2.3. DNA extraction

To isolate DNA from the filtered water samples, filter membranes 
were cut using sterilized scissors and mixed with 20 μL of proteinase 
K and 20 μL of DTT. The DNeasy PowerSoil Kit (Qiagen, Hilden, 
Germany) was employed for DNA extraction. Tissue samples were 
homogenized in a mortar with liquid nitrogen, and DNA extraction 
from tissues was performed using the E.Z.N.A. Water DNA Kit 
(Omega, USA) following the manufacturer’s instructions.

2.4. PCR amplification and sequencing

The V3-V4 regions of the 16S rDNA were amplified using primers 
340F and 805R (340F, 5′-CCTACGGGNBGCASCAG-3′, 805R, 
5′-GACTACNVGGGTATCTAATCC-3′). The first PCR mixture 
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contained 12.5 μL of 2 × KAPA HiFi HotStart Ready Mix Buffer (Kapa 
Biosystems, Wilmington, MA, USA), 2.5 μL of extracted DNA (5 ng/
μL), and 5 μL of each primer (1 μM). The amplification process 
consisted of an initial denaturation-activation step at 95°C for 3 min, 
followed by 25 cycles of denaturation at 95°C for 30 s, annealing at 
55°C for 30 s, and extension at 72°C for 30 s. The PCR products were 
confirmed using 2% agarose gel electrophoresis, purified by magnetic 
beads, and utilized as templates for the second PCR. The second PCR 
conditions were identical to those of the first PCR. Each amplicon 
(300 ng) was pooled and further purified using the MoBio UltraClean 
PCR cleanup kit. Finally, the samples were sequenced on the Illumina 
NovaSeq 6000 platform with PE250 sequencing. The relevant raw 16S 
rDNA sequencing data have been deposited in the GenBank 
repository under accession number PRJNA962514.

2.5. Bioinformatic and statistical analyses

The raw data underwent quality control using fastp software 
(version 0.20.01) (Chen et  al., 2018), and sequence merging was 
performed using FLASH software (version 1.2.72) (Mago and Salzberg, 
2011). The resulting sequences were denoised using Deblur (Amir 
et al., 2017) and imported into QIIME2 (version 138) (Bolyen et al., 
2019). The latest SILVA database for QIIME2 was downloaded from 
the official QIIME2 website at https://docs.qiime2.org/2023.2/. After 
assigning taxonomy and correcting 16S rDNA copy numbers using 
classify-sklearn, the data were collapsed at different levels. Pairwise 
comparisons of the Observed_OTUs and Shannon index were 

1 https://github.com/OpenGene/fastp

2 http://www.cbcb.umd.edu/software/flash

conducted using the Kruskal–Wallis test. Statistically significant 
(p  < 0.05) differences between groups are denoted by different 
lowercase letters. Heatmaps were generated based on the relative 
abundance of bacteria at the phylum (all) and genus (Top50) levels 
using the tool available at https://www.omicstudio.cn/tool/4. The 
Venn diagram was created using the Venn Diagram Plotter tool found 
at http://bioinformatics.psb.ugent.be/webtools/Venn/. The UpSet plot 
and random forest model were performed using the R packages 
UpSetR 1.4.0 and randomForest, respectively. For random forest, the 
dataset was divided into a training set (67%) and a test set (33%). The 
key tree-related parameters, such as the number of trees (500) and the 
tree depth (3), were tuned. The classification accuracy was then used 
to determine the overall rate of correctly classified samples.

3. Results

3.1. Location effect of water samples

A total of 4,592 operational taxonomic units (OTUs) were 
detected in 20 samples. The number of OTUs detected in the water 
samples decreased with decreasing distance from the estuary, with the 
highest number observed in W1 (1154.4 ± 35.45) and the lowest in W4 
(658.4 ± 7.77) (Figure  2A). The Shannon index, which indicates 
bacterial diversity, followed a similar trend, with W1 showing the 
highest diversity and W4 the lowest (Figure 2B). Although there was 
no significant difference in the observed OTUs and Shannon index 
between W1 and W2, W1 had more OTUs than W2, while W2 had 
more diversity than W1, indicating that the species distribution of W2 
was more even. To further compare the diversity of these four 
sampling locations, principal coordinate analysis (PCoA) based on the 
Jaccard and Bray–Curtis distances was performed. The results showed 
that W4 was distinct from the other three groups (Figures 2C,D). 

FIGURE 1

Map of study sites in the Pearl River. The left side shows the Guangzhou area indicated by the red dotted line. The blue line represents the Pearl River, 
and the right side highlights the sampling locations using black triangles.
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When only considering the species of bacteria, all four groups could 
be significantly distinguished, while the species types of W1 and W2 
were more similar (Figure  2C). However, when considering the 
abundance of each species, the differences between groups were 
relatively reduced, particularly among W1, W2, and W3 (Figure 2D). 
The analysis of water samples revealed significant effects of location 
on bacterial diversity and species distribution.

3.2. Bacterial community structures of 
water samples

To characterize the bacterial communities in the sampling 
locations, OTUs were annotated using the Silva 138 database with 99% 
similarity. At the phylum level, Proteobacteria (38.33% ± 2.32%) was 
the most abundant phylum in all samples, followed by Actinobacteriota 
(26.45% ± 1.62%), Bacteroidota (10.91% ± 0.67%), and Planctomycetota 
(8.07% ± 0.54%) (Supplementary Figure 1A). Notably, Cyanobacteria 
and Verrucomicrobiota were found to be highly enriched in W1, W2, 
and W3, while their abundance was lower in W4. Conversely, 
Thermoplasmatota, Crenarchaeota and Marinimicrobia were more 
abundant in W4 than in the other three groups 
(Supplementary Figure  1B). At the genus level, hgcI_clade and 
CL500-29_marine_group exhibited the highest prevalence, accounting 
for 11.89 ± 1.34 and 8.26% ± 0.81%, respectively (Figure  3A). Both 

Comamonadaceae and Rhodobacteraceae were prominently 
represented in W4 but to a lesser extent in the other groups (Figure 3B). 
Strikingly, Hgcl_clade showed the opposite trend. These findings 
indicate a highly diverse distribution of bacterial composition across 
the different water sampling locations.

3.3. Effects of drowning sites on the 
bacteria of rabbit lung tissue

We examined the bacterial composition of the lung tissue of 
drowned rabbits at different water sampling locations and observed 
significant differences in the number of observed OTUs. Among the 
samples, DL3 exhibited the highest number of OTUs at 208.33 ± 5.71 
(Figure 4A). Additionally, the Shannon index was the lowest for DL3 
at 3.63 ± 0.04, while it was highest for DL2 at 4.05 ± 0.02 (Figure 4B). 
Based on Jaccard or Bray–Curtis distance, the PCoA analysis showed 
that the four sample groups could be independently clustered and 
distinguished from each other (Figures  4C,D). When the species 
content (Bray–Curtis distance) was considered, the differences among 
the four groups were more pronounced (Figure 4D). The dominant 
families identified in the samples included Aeromonadaceae, 
Enterobacteriaceae, Fusobacteriaceae, and Peptostreptococcaceae 
(Supplementary Figure  2). To further investigate the community 
relationship between the drowned rabbits and water samples, PCoA 

FIGURE 2

Alpha diversity and beta diversity analysis of four water samples. (A) Observed OTUs. (B) Shannon index. (C) Principal Coordinate Analysis (PCoA) based 
on Jaccard distance. (D) PCoA based on Bray-Curtis distance. Different lowercase letters indicate statistically significant differences between groups 
(p < 0.05, Kruskal-Wallis test).
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was performed. PCo1 could differentiate the rabbit lung tissue from 
the water samples based on both Jaccard and Bray–Curtis distances 
(Supplementary Figure 3), making it challenging to establish a direct 
connection between the water samples and the rabbit lung tissue.

3.4. Random forest model for inferring the 
drowning site

To manage the large amount of data produced by high-throughput 
sequencing, the random forest algorithm was utilized to select 
characteristic biomarker taxa at the genus level. As a feature selection 
procedure, the mean decrease in accuracy of the top 20 bacterial taxa 
is presented in Figure 5A. Rombutsia was the most significant bacterial 
taxon in distinguishing drowning sites. Some specific biomarkers of 
these top  20 bacterial taxa were identified in the lung tissue of 
drowned rabbits from different drowning sites. As demonstrated in 
Figure  5B, LD29 and Plesiomonas were enriched in DL1, while 
Hathewaya, Clostridium_sensu_stricto_1, Clostridium_sensu_
stricto_11, Paraclostridium, Enterobacter, and Pasterurella were 
enriched in DL2. Clostridia_UCG.014, Clostridia_vadinBB60_group, 
Neisseria, Faecalibacterium, Romboutsia, Shigella, and Paeniclostridium 
were enriched in DL3. Raoultella, Bordetella, Aeromonas, and Vibrio 
were enriched in DL4. Notably, Muribaculaceae was significantly 
enriched in both DL3 and DL4.

To evaluate the impact of these genus-level characteristic 
biomarker taxa on predicting drowning sites, a random forest model 
was built, and the test set was used for prediction. The prediction 
results are presented in Table 1, showing a prediction accuracy of 
100% and a probability of predicting the exact site of ≥65.92%. These 

results suggest that the random forest model based on 16S rDNA data 
is highly effective in predicting drowning sites.

3.5. Endemic species for inferring the 
drowning site

Among the 4,874 OTUs identified in the water samples, 1,528 
were annotated to the species level. Venn analysis revealed that W1, 
W2, W3, and W4 had 58, 62, 25 and 175 endemic species, respectively 
(Supplementary Figure 4). To determine if these endemic species were 
present in the drowned samples, an UpSet plot was generated at the 
species level. DL1, DL2, DL3, and DL4 had 1, 1, 2, and 6 endemic 
species, respectively, which were also found in the corresponding 
water samples (in red, Figure 6). Additionally, some drowned samples 
contained endemic species from other sampling locations (in green, 
Figure  6). These findings indicate that the 16S rDNA sequencing 
method may produce both false positives and false negatives, 
rendering it unreliable for inferring the drowning site based on 
endemic species.

4. Discussion

The presence of diatoms in organs such as lungs, liver, kidneys, 
and bone marrow is commonly used as evidence of drowning, and 
comparing the species and density of diatoms in water samples and 
organs can help infer the drowning site (Hürlimann et  al., 2000; 
Carballeira et al., 2018; Zhang et al., 2021). However, this approach is 
challenging to generalize due to the scarcity and dispersal of diatoms 

FIGURE 3

Bacterial taxonomy of water samples at the genus level. (A) Bar plot. (B) Heatmap displaying the top 50 taxa.
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throughout the bodies of drowned individuals, as well as the need for 
specialized expertise in diatom classification. To overcome these 
challenges, new techniques have been developed, such as using 16S 
rDNA of microplankton for molecular diagnosis of drowning (Kane 
et al., 1996) or employing high-throughput sequencing methods such 
as 454 pyrosequencing to detect aquatic bacteria in blood and organs 
(Kakizaki et al., 2012). These advancements in microbiome research 
have heightened the significance of microbiome analysis in forensic 
applications, enabling rapid identification of microbial species and 
composition in tissue and water samples (Alan and Sarah, 2012; 
Clarke et al., 2017).

Studies in environmental microbiology have demonstrated that 
water harbors a diverse array of microorganisms, with species and 
strains varying by location (Zhang et al., 2022). Plankton, including 
bacteria, are sensitive to environmental factors such as temperature, 
light, flow rate, pH, salinity, and electrolytes (Wang et  al., 2013; 
Benbow et al., 2015). Our data revealed distinct community structures 
in different areas of the Pearl River, aligning with previous studies 
(Cannon et al., 2017; Zhao et al., 2018). As the distance from the 
estuary to the South China Sea decreased, the number of observed 
OTUs in water samples gradually decreased. Furthermore, 
we observed a higher abundance of certain salt-tolerant bacteria, such 
as Rhodobacteraceae and Comamonadaceae, in a specific location 
(W4), possibly due to seawater infiltration (Guo et al., 2020; Hu et al., 

2020; Nishiwaki-Akine et al., 2022). When considering Bray–Curtis 
distance as a weighting factor, the differences within the same water 
sampling location were significantly higher compared to Jaccard 
distance, indicating that while the species composition in the same 
location remained relatively stable, their proportions dynamically 
changed due to water flow, resulting in increased intragroup 
differences under weighted conditions.

In this study, our objective was to analyze the bacterial 
composition of water samples collected from different locations in the 
Pearl River, as well as the corresponding drowned corpses. Our goal 
was to develop a novel bioinformatics method for diagnosing 
drowning sites. While it is expected that microorganisms found in the 
lung tissue of drowned individuals should theoretically have a strong 
correlation with those in the drowning medium, the variety of 
microorganisms in water and the fluidity of water can cause 
fluctuations in their relative abundance. Moreover, the lung tissue 
itself harbors a significant number of microorganisms, making it 
challenging to establish a direct link between the microorganisms in 
the tissue and the specific water source based solely on their types and 
abundance in water samples. To overcome these challenges, 
we  employed a random forest modeling approach to identify 
important biomarkers at the genus level and their relative abundance 
in lung tissues of drowned rabbits from different locations. Through 
this approach, our model achieved a remarkable accuracy of 100% in 

FIGURE 4

Alpha diversity and beta diversity analysis of four drowned samples. (A) Observed OTUs. (B) Shannon index. (C) PCoA based on Jaccard distance. 
(D) PCoA based on Bray–Curtis distance. Different letters above boxes indicate statistically significant differences between groups (p < 0.05).
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inferring the drowning site. Among the top 20 bacterial genus taxa 
that had the most significant contribution to the random forest model, 
a majority of them (18/20) belonged to the phyla Firmicutes and 
Proteobacteria (Figure  5). Firmicutes are frequently observed to 
be highly abundant in decomposition studies, particularly in cadavers 
with longer postmortem intervals (Hyde et al., 2013; Procopio et al., 
2019; Dash and Das, 2020). They are commonly found during the 
decomposition process. Proteobacteria are a group of bacteria that can 
function in both anaerobic and aerobic conditions (Liu et al., 2023), 
are known to be involved in the decomposition of organic matter and 
are reported as one of the most abundant taxa in decomposing 

cadavers (Hyde et  al., 2013; Roy et  al., 2021; Xiang et  al., 2023). 
Romboutsia, a genus within the class Clostridia and family 
Peptostreptococcaceae, is commonly found in decomposition studies 
(Xiang et al., 2023). Clostridia, to which Romboutsia belongs, are 
considered ubiquitous in both the early and late stages of 
decomposition (Javan et al., 2017; Ohashi and Fujisawa, 2019) and 
have a significant impact on the accuracy of random forest models. 
The findings of this study highlight the importance of specific 
microbial taxa abundance in the lungs of drowned corpses and 
their  association with the drowning site. Understanding this 
association is crucial for the further development and validation of 

FIGURE 5

Random forest screening for bacterial taxonomic biomarkers. (A) Results of the mean decrease accuracy method in a random forest classifier. The 
x-axis represents the importance index, and the y-axis represents the bacterial taxonomic biomarkers. The top 20 biomarkers ranked by importance 
coefficient are displayed. (B) Unsupervised clustering heatmap showing hierarchical clustering results of the top 20 bacterial taxonomic biomarkers 
identified by random forest model.

TABLE 1 Drowning sites assignment probabilities of the testing samples from four groups of lung samples obtained with a random forest (RF) algorithm 
classifier based on multiple classification.

SampleID DL1_pro DL2_pro DL3_pro DL4_pro prediction real

DL1-4 0.7298 0.083 0.0842 0.103 DL1 DL1

DL1-5 0.7532 0.0906 0.071 0.0852 DL1 DL1

DL2-1 0.1132 0.7442 0.0544 0.0882 DL2 DL2

DL2-4 0.1216 0.6988 0.0614 0.1182 DL2 DL2

DL3-4 0.117 0.0666 0.6812 0.1352 DL3 DL3

DL3-6 0.0884 0.0886 0.6644 0.1586 DL3 DL3

DL4-2 0.0984 0.0502 0.1052 0.7462 DL4 DL4

DL4-5 0.125 0.0734 0.1424 0.6592 DL4 DL4

The color-coded ones indicate the samples correctly predicted by the random forest model and their probability distributions.
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microbiome methods used in forensic investigations for inferring 
drowning sites.

We attempted to utilize endemic species in water to infer the 
drowning site. However, we encountered challenges, as the endemic 
species identified in one site were also present in the lung tissues of 
drowned rabbits from other sites. Similar inconsistencies have been 
observed in our previous research regarding the consistency of 
diatoms in victim organs and drowning media (Li et  al., 2022). 
We have identified four potential reasons for this inconsistency: (1) 
Water mobility can influence the species and abundance of 
microorganisms in both water samples and lung tissue of drowned 
rabbits. (2) The small volume (10–50 mL) of drowning medium may 
not fully represent the microbial composition of the water at the actual 
drowning site. (3) The volume of rabbit lung is relatively large, and the 
sampling procedure may introduce bias as only a small portion is used 
for testing. (4) The accuracy of species prediction at the species level 
using Qiime2’s plug-in q2-feature-classifier is low, which hampers 
specific species identification (Bokulich et al., 2018).

Our data indicated that greater differences among water samples 
provide more useful information for inferring the drowning site, but this 
method still has limitations. The relative abundance of microorganisms 
in blood and internal organs changes dynamically in different postmortem 
intervals (Can et al., 2014; Javan et al., 2016), which can potentially affect 
the accuracy of inferring drowning sites and requires further evaluation. 
Furthermore, it is important to note that our current research was 
primary research conducted on animals, which have a similar microbiome 
due to their consistent biological background. This similarity facilitates 
the discovery of differences caused by different processing factors. 
However, the situation is different in forensic practice, as humans have a 
more complex biological background and lifestyle (D’Argenio et al., 2021). 
Therefore, the information obtained should be  further validated in 
humans. Notably, victims found in flowing rivers are usually far from 
drowning sites in many forensic practices (Zhang et al., 2020), and it is 
necessary to evaluate whether the differences in aquatic bacteria during 
the flow process affect the experimental results.

In conclusion, our data suggest that the random forest model 
based on the species and abundance of bacteria in the lung tissue of 
drowned individuals holds promise as a method for inferring the 
drowning site. However, the success of this method relies on the 
establishment of a comprehensive database of bacterial species and 
abundance in the lung tissues of drowned individuals across different 
water sources, which requires extensive systematic work. Future 
studies could consider implementing more rigorous protocols, 
including larger sample sizes, appropriate controls, and standardized 
procedures, to enhance the reliability of the results. Therefore, 
we  sincerely hope that more forensic experts will participate in 
this work.
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