3,615 research outputs found
Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source
The method of decoy-state quantum key distribution (QKD) requests different
intensities of light pulses. Existing theory has assumed exact control of
intensities. Here we propose a simple protocol which is secure and efficient
even there are errors in intensity control. In our protocol, decoy pulses and
signal pulses are generated from the same father pulses with a two-value
attenuation. Given the upper bound of fluctuation of the father pulses, our
protocol is secure provided that the two-value attenuation is done exactly. We
propose to use unbalanced beam-splitters for a stable attenuation. Given that
the intensity error is bounded by , with the same key rate, our method
can achieve a secure distance only 1 km shorter than that of an ideal protocol
with exactly controlled source
Radiative transitions in charmonium from twisted mass lattice QCD
We present a study for charmonium radiative transitions:
, and
using twisted mass lattice QCD gauge
configurations. The single-quark vector form factors for and
are also determined. The simulation is performed at a lattice
spacing of fm and the lattice size is . After
extrapolation of lattice data at nonzero to 0, we compare our results
with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table
Ultrathin Acoustic Parity-Time Symmetric Metasurface Cloak
Invisibility or unhearability cloaks have beenmade possible by using metamaterials enabling light or sound to flow around obstacle
without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of
unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate
transforming cloak. Bending and stretching the coordinate grid in space require stringent material parameters; therefore, small
inaccuracies and inevitablematerial losses become sources for unwanted scattering that are decremental to the desired effect.These
obstacles further limit the possibility of achieving a robust concealment of sizeable objects from either radar or sonar detection. By
using an elaborate arrangement of gain and lossy acousticmedia respecting parity-time symmetry, we built a one-way unhearability
cloak able to hide objects seven times larger than the acoustic wavelength. Generally speaking, our approach has no limits in terms
of working frequency, shape, or size, specifically though we demonstrate how, in principle, an object of the size of a human can be
hidden from audible sound
General theory of decoy-state quantum cryptography with source errors
The existing theory of decoy-state quantum cryptography assumes the exact
control of each states from Alice's source. Such exact control is impossible in
practice. We develop the theory of decoy-state method so that it is
unconditionally secure even there are state errors of sources, if the range of
a few parameters in the states are known. This theory simplifies the practical
implementation of the decoy-state quantum key distribution because the
unconditional security can be achieved with a slightly shortened final key,
even though the small errors of pulses are not corrected.Comment: Our results can be used securely for any source of diagonal states,
including the Plug-&-Play protocol with whatever error pattern, if we know
the ranges of errors of a few parameter
Density alteration in non-physiological cells
In the present study an important phenomenon of cells was discovered: the change of intracellular density in cell's response to drug and environmental factors. For convenience, this phenomenon is named as "density alteration in non-physiological cells" ( DANCE). DANCE was determined by discontinuous sucrose gradient centrifugation (DSGC), in which cells were separated into several bands. The number and position of the bands in DSGC varied with the change of cell culture conditions, drugs, and physical process, indicating that cell's response to these factors was associated with alteration of intracellular density. Our results showed that the bands of cells were molecularly different from each other, such as the expression of some mRNAs. For most cells tested, intracellular density usually decreased when the cells were in bad conditions, in presence of drugs, or undergoing pathological changes. However, unlike other tissue cells, brain cells showed increased intracellular density in 24 hrs after the animal death. In addition, DANCE was found to be related to drug resistance, with higher drug-resistance in cells of lower intracellular density. Further study found that DANCE also occurred in microorganisms including bacteria and fungus, suggesting that DANCE might be a sensitive and general response of cells to drugs and environmental change. The mechanisms for DANCE are not clear. Based on our study the following causes were hypothesized: change of metabolism mode, change of cell membrane function, and pathological change. DANCE could be important in medical and biological sciences. Study of DANCE might be helpful to the understanding of drug resistance, development of new drugs, separation of new subtypes from a cell population, forensic analysis, and importantly, discovery of new physiological or pathological properties of cells
Diagnostic value of two dimensional shear wave elastography combined with texture analysis in early liver fibrosis.
BACKGROUND: Staging diagnosis of liver fibrosis is a prerequisite for timely diagnosis and therapy in patients with chronic hepatitis B. In recent years, ultrasound elastography has become an important method for clinical noninvasive assessment of liver fibrosis stage, but its diagnostic value for early liver fibrosis still needs to be further improved. In this study, the texture analysis was carried out on the basis of two dimensional shear wave elastography (2D-SWE), and the feasibility of 2D-SWE plus texture analysis in the diagnosis of early liver fibrosis was discussed.
AIM: To assess the diagnostic value of 2D-SWE combined with textural analysis in liver fibrosis staging.
METHODS: This study recruited 46 patients with chronic hepatitis B. Patients underwent 2D-SWE and texture analysis; Young\u27s modulus values and textural patterns were obtained, respectively. Textural pattern was analyzed with regard to contrast, correlation, angular second moment (ASM), and homogeneity. Pathological results of biopsy specimens were the gold standard; comparison and assessment of the diagnosis efficiency were conducted for 2D-SWE, texture analysis and their combination.
RESULTS: 2D-SWE displayed diagnosis efficiency in early fibrosis, significant fibrosis, severe fibrosis, and early cirrhosis (AUC \u3e 0.7, P \u3c 0.05) with respective AUC values of 0.823 (0.678-0.921), 0.808 (0.662-0.911), 0.920 (0.798-0.980), and 0.855 (0.716-0.943). Contrast and homogeneity displayed independent diagnosis efficiency in liver fibrosis stage (AUC \u3e 0.7, P \u3c 0.05), whereas correlation and ASM showed limited values. AUC of contrast and homogeneity were respectively 0.906 (0.779-0.973), 0.835 (0.693-0.930), 0.807 (0.660-0.910) and 0.925 (0.805-0.983), 0.789 (0.639-0.897), 0.736 (0.582-0.858), 0.705 (0.549-0.883) and 0.798 (0.650-0.904) in four liver fibrosis stages, which exhibited equivalence to 2D-SWE in diagnostic efficiency (P \u3e 0.05). Combined diagnosis (PRE) displayed diagnostic efficiency (AUC \u3e 0.7, P \u3c 0.01) for all fibrosis stages with respective AUC of 0.952 (0.841-0.994), 0.896 (0.766-0.967), 0.978 (0.881-0.999), 0.947 (0.835-0.992). The combined diagnosis showed higher diagnosis efficiency over 2D-SWE in early liver fibrosis (P \u3c 0.05), whereas no significant differences were observed in other comparisons (P \u3e 0.05).
CONCLUSION: Texture analysis was capable of diagnosing liver fibrosis stage, combined diagnosis had obvious advantages in early liver fibrosis, liver fibrosis stage might be related to the hepatic tissue hardness distribution
- …
