152 research outputs found

    Quasiparticle Relaxation Across a Spin Gap in the Itinerant Antiferromagnet UNiGa5

    Full text link
    Ultrafast time-resolved photoinduced reflectivity is measured for the itinerant antiferromagnet UNiGa5_{5} (TNT_{N} \approx85 K) from room temperature to 10 K. The relaxation time τ\tau shows a sharp increase at TNT_{N} consistent with the opening of a spin gap. In addition, the temperature dependence of τ\tau below TNT_{N} is consistent with the opening of a spin gap leading to a quasiparticle recombination bottleneck as revealed by the Rothwarf-Taylor model. This contrasts with canonical heavy fermions such as CeCoIn5_{5} where the recombination bottleneck arises from the hybridization gap.Comment: 5 pages, 5 figure

    Restudy on Dark Matter Time-Evolution in the Littlest Higgs model with T-parity

    Full text link
    Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass MHM_H taken to be 300 GeV and don't consider T-parity violation, only two narrow ranges 133<MAH<135133<M_{A_{H}}<135 GeV and 167<MAH<169167<M_{A_{H}}<169 GeV are tolerable with the current astrophysical observation and if 135<MAH<167135<M_{A_{H}}<167 GeV, there must at least exist another species of heavy particle contributing to the cold dark matter. As long as the T-parity can be violated, the heavy photon can decay into regular standard model particles and would affect the dark matter abundance in the universe, we discuss the constraint on the T-parity violation parameter based on the present data. Direct detection prospects are also discussed in some detail.Comment: 13 pages, 11 figures include

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Hydrodynamics of a 5D Einstein-dilaton black hole solution and the corresponding BPS state

    Full text link
    We apply the potential reconstruction approach to generate a series of asymptotically AdS (aAdS) black hole solutions, with a self-interacting bulk scalar field. Based on the method, we reproduce the pure AdS solution as a consistency check and we also generate a simple analytic 5D black hole solution. We then study various aspects of this solution, such as temperature, entropy density and conserved charges. Furthermore, we study the hydrodynamics of this black hole solution in the framework of fluid/gravity duality, e.g. the ratio of the shear viscosity to the entropy density. In a degenerate case of the 5D black hole solution, we find that the c function decreases monotonically from UV to IR as expected. Finally, we investigate the stability of the degenerate solution by studying the bosonic functional energy of the gravity and the Witten-Nester energy EWNE_{WN}. We confirm that the degenerate solution is a BPS domain wall solution. The corresponding superpotential and the solution of the killing spinor equation are found explicitly.Comment: V2: 23 pages, no figure, minor changes, typos corrected, new references and comments added, version accepted by JHE

    A new pairwise kernel for biological network inference with support vector machines

    Get PDF
    International audienceBACKGROUND: Much recent work in bioinformatics has focused on the inference of various types of biological networks, representing gene regulation, metabolic processes, protein-protein interactions, etc. A common setting involves inferring network edges in a supervised fashion from a set of high-confidence edges, possibly characterized by multiple, heterogeneous data sets (protein sequence, gene expression, etc.). RESULTS: Here, we distinguish between two modes of inference in this setting: direct inference based upon similarities between nodes joined by an edge, and indirect inference based upon similarities between one pair of nodes and another pair of nodes. We propose a supervised approach for the direct case by translating it into a distance metric learning problem. A relaxation of the resulting convex optimization problem leads to the support vector machine (SVM) algorithm with a particular kernel for pairs, which we call the metric learning pairwise kernel. This new kernel for pairs can easily be used by most SVM implementations to solve problems of supervised classification and inference of pairwise relationships from heterogeneous data. We demonstrate, using several real biological networks and genomic datasets, that this approach often improves upon the state-of-the-art SVM for indirect inference with another pairwise kernel, and that the combination of both kernels always improves upon each individual kernel. CONCLUSION: The metric learning pairwise kernel is a new formulation to infer pairwise relationships with SVM, which provides state-of-the-art results for the inference of several biological networks from heterogeneous genomic data

    Activation of Epidermal Growth Factor Receptor Is Required for NTHi-Induced NF-κB-Dependent Inflammation

    Get PDF
    Inflammation is a hallmark of many serious human diseases. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen causing respiratory tract infections in both adults and children. NTHi infections are characterized by inflammation, which is mainly mediated by nuclear transcription factor-kappa B (NF-κB)-dependent production of proinflammatory mediators. Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating NF-κB activation and inflammation, however, remains largely unknown.In the present study, we demonstrate that EGFR plays a vital role in NTHi-induced NF-κB activation and the subsequent induction of proinflammatory mediators in human middle ear epithelial cells and other cell types. Importantly, we found that AG1478, a specific tyrosine kinase inhibitor of EGFR potently inhibited NTHi-induced inflammatory responses in the middle ears and lungs of mice in vivo. Moreover, we found that MKK3/6-p38 and PI3K/Akt signaling pathways are required for mediating EGFR-dependent NF-κB activation and inflammatory responses by NTHi.Here, we provide direct evidence that EGFR plays a critical role in mediating NTHi-induced NF-κB activation and inflammation in vitro and in vivo. Given that EGFR inhibitors have been approved in clinical use for the treatment of cancers, current studies will not only provide novel insights into the molecular mechanisms underlying the regulation of inflammation, but may also lead to the development of novel therapeutic strategies for the treatment of respiratory inflammatory diseases and other inflammatory diseases

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore