374 research outputs found

    Validation and interpretation of three-dimensional configuration of a magnetic cloud flux rope

    Full text link
    One "strong" magnetic cloud (MC) with the magnetic field magnitude reaching \sim 40 nT at 1 au during 2012 June 16-17 is examined in association with a pre-existing magnetic flux rope (MFR) identified on the Sun. The MC is characterized by a quasi-three dimensional (3D) flux rope model based on in situ measurements from the Wind spacecraft. The magnetic flux contents and other parameters are quantified. In addition, a correlative study with the corresponding measurements of the same structure crossed by the Venus Express (VEX) spacecraft at a heliocentric distance 0.7 au and with an angular separation 6\sim 6^\circ in longitude is performed to validate the MC modeling results. The spatial variation between the Wind and VEX magnetic field measurements is attributed to the 3D configuration of the structure as featured by a knotted bundle of flux. The comparison of the magnetic flux contents between the MC and the source region on the Sun indicates that the 3D reconnection process accompanying an M1.9 flare may correspond to the magnetic reconnection between the field lines of the pre-existing MFR rooted in the opposite polarity footpoints. Such a process reduces the amount of the axial magnetic flux in the erupted flux rope, by approximately 50\%, in this case.Comment: Submitted to Ap

    Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    Full text link
    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.Key PointsIon temperature anisotropies and proton beam/core flows are sources of enhanced field observationsFor two events Alfven‐cyclotron modes are most unstableFor three events magnetosonic modes are most unstablePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/1/jgra52322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/2/jgra52322_am.pd

    Modeling FETCH Observations of 2005 May 13 CME

    Full text link
    This paper evaluates the quality of CME analysis that has been undertaken with the rare Faraday rotation observation of an eruption. Exploring the capability of the FETCH instrument hosted on the MOST mission, a four-satellite Faraday rotation radio sounding instrument deployed between the Earth and the Sun, we discuss the opportunities and challenges to improving the current analysis approaches.Comment: 33 pages, 24 figure

    Spontaneous Mirror Parity Violation, Common Origin of Matter and Dark Matter, and the LHC Signatures

    Full text link
    Existence of a mirror world in the universe is a fundamental way to restore the observed parity violation in weak interactions and provides the lightest mirror nucleon as a unique GeV-scale dark matter particle candidate. The visible and mirror worlds share the same spacetime of the universe and are connected by a unique space-inversion symmetry -- the mirror parity (P). We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and study its spontaneous breaking from minimizing the Higgs vacuum potential. The domain wall problem is resolved by a unique soft breaking linear-term from the P-odd weak-singlet Higgs field. We also derive constraint from the Big-Bang nucleosynthesis. We then analyze the neutrino seesaw for both visible and mirror worlds, and demonstrate that the desired amounts of visible matter and mirror dark matter in the universe arise from a common origin of CP violation in the neutrino sector via leptogenesis. We derive the Higgs mass-spectrum and Higgs couplings with gauge bosons and fermions. We show their consistency with the direct Higgs searches and the indirect precision constraints. We further study the distinctive signatures of the predicted non-standard Higgs bosons at the LHC. Finally, we analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments.Comment: 55pp. PRD final version. Only minor refinements (including to comment on the latest LHC Higgs searches in Sec.5 and estimate abundances of mirror dark matter particles in Sec.6); more references adde

    A game prototype for understanding the safety issues of a lifeboat launch

    Get PDF
    © 2018 The Author(s) Novel, advanced game techniques provide us with new possibilities to mimic a complicated training process, with the added benefit of enhanced safety. In this paper, we design and implement a 3D game with the support of virtual reality equipment which imitates the process of a lifeboat launch, involving both tractor manoeuvres and boat operations. It is a complex but vital process which can save lives at sea but also has many potential hazards. The primary objective of the game is to allow novices to better understand the sequence of the operations and manage the potential risks which may occur during the launch process. Additionally, the game has been promoted to the general public for educational purposes and to raise awareness of the safety issues involved. The key modules of the game are designed based on physical simulations to give the players enhanced plausible cognition and enjoyable interaction. We conducted two case studies for the two purposes of the games: one for training with volunteers without launching experience and the other for public awareness of the potential hazards with young children. The game is proven to be very promising for future professional training, and it serves the educational purpose of awareness of the safety issues for general public while being entertaining

    Constraints on the phase γ\gamma and new physics from BKπB\to K\pi Decays

    Full text link
    Recent results from CLEO on BKπB\to K\pi indicate that the phase γ\gamma may be substantially different from that obtained from other fit to the KM matrix elements in the Standard Model. We show that γ\gamma extracted using BKπ,ππB\to K\pi, \pi\pi is sensitive to new physics occurring at loop level. It provides a powerful method to probe new physics in electroweak penguin interactions. Using effects due to anomalous gauge couplings as an example, we show that within the allowed ranges for these couplings information about γ\gamma obtained from BKπ,ππB\to K \pi, \pi\pi can be very different from the Standard Model prediction.Comment: Revised version with analysis done using new data from CLEO. RevTex, 11 Pages with two figure

    Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride

    Get PDF
    Organic thin-film transistors (OTFTs) with high mobility and low contact resistance have been actively pursued as building blocks for low-cost organic electronics. In conventional solution-processed or vacuum-deposited OTFTs, due to interfacial defects and traps, the organic film has to reach a certain thickness for efficient charge transport. Using an ultimate monolayer of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) molecules as an OTFT channel, we demonstrate remarkable electrical characteristics, including intrinsic hole mobility over 30 cm2/Vs, Ohmic contact with 100 Ω · cm resistance, and band-like transport down to 150 K. Compared to conventional OTFTs, the main advantage of a monolayer channel is the direct, nondisruptive contact between the charge transport layer and metal leads, a feature that is vital for achieving low contact resistance and current saturation voltage. On the other hand, bilayer and thicker C8-BTBT OTFTs exhibit strong Schottky contact and much higher contact resistance but can be improved by inserting a doped graphene buffer layer. Our results suggest that highly crystalline molecular monolayers are promising form factors to build high-performance OTFTs and investigate device physics. They also allow us to precisely model how the molecular packing changes the transport and contact properties
    corecore