36 research outputs found

    Continuous Finite-Time Terminal Sliding Mode IDA-PBC Design for PMSM with the Port-Controlled Hamiltonian Model

    Get PDF
    Finite-time control scheme for speed regulation of permanent magnet synchronous motor (PMSM) is investigated under the port-controlled Hamiltonian (PCH), terminal sliding mode (TSM), and fast TSM stabilization theories. The desired equilibrium is assigned to the PCH structure model of PMSM by maximum torque per ampere (MTPA) principle, and the desired Hamiltonian function of state error is constructed in the form of fractional power structure as TSM and fast TSM, respectively. Finite-time TSM and fast TSM controllers are designed via interconnection and damping assignment passivity-based control (IDA-PBC) methodology, respectively, and the finite-time stability of the desired equilibrium point is also achieved under the PCH framework. Simulation results validate the improved performance of the presented scheme

    Spatiotemporal Genotype Replacement of H5N8 Avian Influenza Viruses Contributed to H5N1 Emergence in 2021/2022 Panzootic

    Get PDF
    Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.</p

    Meta-analysis of the association between toll-like receptor gene polymorphisms and hepatitis C virus infection

    Get PDF
    ObjectiveThe objective of this study is to investigate the association between toll-like receptor (TLR) 3/7 gene polymorphisms and the infection by hepatitis C virus (HCV).MethodsPubMed, Embase, Web of Science, Scopus, CNKI, Wanfang Data, and SinoMed were searched to identify studies focusing on the association between the TLR3 rs3775290 or the TLR7 rs179008 single nucleotide polymorphisms (SNPs) and the HCV infection. All the related articles were collected from the inception of each database to 15 January 2023. Our meta-analysis was conducted using the allelic model, the dominant model, and the recessive model. Outcomes were presented by odds ratio (ORs) and 95% confidence interval (95%CI). The heterogeneity across studies was assessed by the I2 test. A subgroup analysis was performed to explore the source of heterogeneity. Funnel plots were drawn to assess the risk of publication bias. Review Manager 5.4 was used for statistical analysis.ResultsTen articles were finally included, among which six studies were analyzed for rs3775290 and five studies were analyzed for rs179008. Studies relating to rs3775290 included 801 patients and 1,045 controls, whereas studies relating to rs179008 included 924 patients and 784 controls. The results of the meta-analysis showed that there is no significant association between rs3775290 gene polymorphism and HCV infection (T vs. C: OR = 1.12, 95%CI 0.97–1.30; TT+CT vs. CC: OR = 1.20, 95%CI 0.73–1.96; TT vs. CT+CC: OR = 1.13, 95%CI 0.68–1.89). The recessive model showed that rs179008-T allele homozygotes had an 89% increased risk of infection by HCV compared with rs179008-A allele carriers (TT vs. AT+AA: OR = 1.89, 95%CI 1.13–3.16). The results of the subgroup analysis demonstrated that the characteristics of the control population may serve as an important source of heterogeneity. In the African populations, individuals with homozygous rs179008-T alleles had a higher risk of infection by HCV than rs179008-A allele carriers (OR = 2.14, 95%CI 1.18–3.87). We did not find that this difference existed in the European populations (OR = 1.24, 95%CI 0.43–3.56).ConclusionThere is no significant association between rs3775290 single nucleotide polymorphism and the infection by HCV. Individuals with homozygous rs179008-T alleles have a higher risk of an infection by HCV than rs179008-A allele carriers, which is statistically significant in the African populations

    Adaptive dynamic surface control with Nussbaum gain for course-keeping of ships

    No full text
    Combining dynamic surface control and Nussbaum gain function with backstepping algorithm, a novel adaptive nonlinear control strategy is proposed for the nonlinear course control problem of ships with parameter uncertainties and completely unknown control coefficient. Dynamic surface control is incorporated into backstepping technique to overcome the problem of its inherent “explosion of terms” so that the control law is simpler and easier to implement in engineering. Nussbaum function is used to deal with the unknown sign of uncertain control coefficient and the possible controller singularity problem. By means of Lyapunov function and the lemma of Nussbaum function, it is proved theoretically that the designed adaptive nonlinear control law can force the actual course of ships to converge to and keep at the desired course of ships, while guarantee the global uniform boundedness of all signals of the resulting closed-loop control system. The effectiveness of the proposed scheme is demonstrated through the simulations involving two ships.Web of Science2724023

    Continuous Finite-Time Terminal Sliding Mode IDA-PBC Design for PMSM with the Port-Controlled Hamiltonian Model

    No full text
    Finite-time control scheme for speed regulation of permanent magnet synchronous motor (PMSM) is investigated under the portcontrolled Hamiltonian (PCH), terminal sliding mode (TSM), and fast TSM stabilization theories. The desired equilibrium is assigned to the PCH structure model of PMSM by maximum torque per ampere (MTPA) principle, and the desired Hamiltonian function of state error is constructed in the form of fractional power structure as TSM and fast TSM, respectively. Finite-time TSM and fast TSM controllers are designed via interconnection and damping assignment passivity-based control (IDA-PBC) methodology, respectively, and the finite-time stability of the desired equilibrium point is also achieved under the PCH framework. Simulation results validate the improved performance of the presented scheme

    Assessing the Complexity of Intelligent Parks’ Internet of Things Big Data System

    No full text
    Today, intelligence in all walks of life is developing at an unexpectedly fast speed. The complexity of the Internet of Things (IoT) big data system of intelligent parks is analyzed to unify the information transmission of various industries, such as smart transportation, smart library, and smart medicine, thereby diminishing information islands. The traditional IoT systems are analyzed; on this basis, a relay node is added to the transmission path of the data information, and an intelligent park IoT big data system is constructed based on relay cooperation with a total of three hops. Finally, the IoT big data system is simulated and tested to verify its complexity. Results of energy efficiency analysis suggest that when the power dividing factor is 0.5, 0.1, and 0.9, the energy efficiency of the IoT big data system first increases and then decreases as α0 increases, where the maximum value appears when α0 is about 7 J. Results of outage probability analysis demonstrate that the system’s simulation result is basically the same as that of the theoretical result. Under the same environment, the more hop paths the system has, the more the number of relays is; moreover, the larger the fading index m, the better the system performance, and the lower the outage possibility. Results of transmission accuracy analysis reveal that the IoT big data system can provide a result that is the closest to the actual result when the successful data transmission probability is 100%, and the parameter λ values are between 0.01 and 0.05; in the meantime, the delay of successful data transmission is reduced gradually. In summary, the wireless relay cooperation transmission technology can reduce the outage probability and data transmission delay probability of the IoT big data system in the intelligent park by adding the multihop path, thereby improving the system performance. The above results can provide an experimental basis for exploring the complexity of IoT systems in intelligent parks

    A trajectory tracking robust controller of surface vessels with disturbance uncertainties

    No full text
    This brief considers the problem of trajectory tracking control for marine surface vessels with unknown time-variant environmental disturbances. The adopted mathematical model of the surface ship movement includes the Coriolis and centripetal matrix and the nonlinear damping terms. An observer is constructed to provide an estimation of unknown disturbances and is applied to design a novel trajectory tracking robust controller through a vectorial backstepping technique. It is proved that the designed tracking controller can force the ship to track the arbitrary reference trajectory and guarantee that all the signals of the closed-loop trajectory tracking control system of ships are globally uniformly ultimately bounded. The simulation results and comparisons illustrate the effectiveness of the proposed controller and its robustness to external disturbances.Web of Science2341518151

    Observer-Based Robust Fuzzy Controller Design for Uncertain Singular Fuzzy Systems Subject to Passivity Criterion

    No full text
    This paper discusses an observer-based control problem for uncertain Takagi–Sugeno Fuzzy Singular Systems (T-SFSS) subject to passivity performance constraints. Through the Parallel Distributed Compensation (PDC) approach and the Proportional Derivative (PD) control scheme, an observer-based fuzzy controller is constructed to achieve the stability of the considered system. An unlimited positive definite matrix is utilized to construct the Lyapunov function and derive sufficient stability conditions to develop a relaxed design method. Moreover, some technologies, such as the Schur complement, projection lemma, and Singular Value Decomposition (SVD), are applied to convert the conditions to Linear Matrix Inequality (LMI) form. Therefore, the convex optimization algorithm is used to solve the LMI conditions to find feasible solutions. The observer-based fuzzy controller is established with the obtained solutions to guarantee stability and passivity performance for the uncertain nonlinear singular systems. Finally, two examples are provided to verify the availability of the proposed fuzzy control approach

    Audiovisual bimodal mutual compensation of Chinese

    No full text

    Research of a modified nano-depressure and augmented injection agent

    No full text
    In this paper, the research and application of nanomaterials in oilfield chemical engineering was briefly described with emphasis on the nano-silica in enhanced oil recovery, depressure and augmented injection. A study on the modification of nano-silica was carried out indoors, and a modified nano-depressure and augmented injection agent was prepared by using a coupling agent for surface grafting modification, followed by introducing functional monomers for in-situ modification. The effects of silica dosage, coupling agent dosage, dispersant and regulator ratio, and modification time on the modified product were investigated. It was analyzed by infrared spectroscopy, thermogravimetric analysis, nanoparticle size analyzer, transmission electron microscope, atomic force microscope, etc. A series of experiments were conducted to evaluate the temperature and salt resistance, wettability, as well as depressure and augmented injection performance of the modified products
    corecore