23 research outputs found

    Development and Validation of a Simple Method for the Detection of Fascaplysin in Plasma

    Get PDF
    Fascaplysin is a cytotoxic natural product isolated from a variety of Indo-Pacific marine organisms, primarily Fascaplysinopsis sponges and Didemnum tunicates. Positive xenograft studies involving this alkaloid structural class have indicated that fascaplysin may serve as an important lead compound for preclinical development. This study was undertaken as a prelude to a full pharmacokinetics and therapeutic assessment of fascaplysin. We describe here a simple plasma preparation and a rapid HPLC method for the detection of fascaplysin in mice. The method was validated by parameters including good linear correlation, a limit of quantification of 107.1 μg/ mL, and a good precision with a coefficient of variation of 0.92% for 10 μg/mL. This method provides excellent sensitivity and visualization of fascaplysin as a single peak allowing for rapid analysis of plasma samples involving absorption, distribution, and metabolism studies. A preliminary pharmacokinetics study in C57Bl/6 mice using 20.6 mg/kg fascaplysin yielded a biphasic curve with T½α=16.7 min, T½β=11.7 h, and C0 of 17.1 μg/mL

    HPLC Plasma Assay of a Novel Anti-MRSA Compound, Kaempferol-3-O-Alpha-L-(2 \u27\u27,3 \u27\u27-di-p-coumaroyl)rhamnoside, from Sycamore Leaves

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a serious pathogen that is resistant to current antibiotic therapy. Thus, there is an urgent need for novel antimicrobial agents that can effectively combat these new strains of drug-resistant superbugs . Recently, fractionation of an extract from Platanus occidentalis (American sycamore) leaves produced an active kaempferol molecule, 3-O-alpha-L-(2 ,3 -di-p-coumaroyl)rhamnoside (KCR), in four isomeric forms; all four isomers exhibit potent anti-MRSA activity. In order to further the preclinical development of KCR as a new antibiotic class, we developed and validated a simple analytical method for assaying KCR plasma concentration. Because KCR will be developed as a new drug, although comprising four stereoisomers, the analytical method was devised to assay the total amount of all four isomers. In the present work, both a plasma processing procedure and an HPLC method have been developed and validated. Mouse plasma containing KCR was first treated with ethanol and then centrifuged. The supernatant was dried, suspended in ethanol, centrifuged, and the supernatant was injected into an HPLC system comprising a Waters C18, a mobile phase composing methanol, acetonitrile, and trifluoroacetic acid and monitored at 313 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 0.27 μg/mL, and high accuracy. In summary, this method allows a rapid analysis of KCR in the plasma samples for pharmacokinetics studies

    Development and validation of a rapid method for the detection of latrunculol A in plasma

    Get PDF
    Latrunculol A is a recently discovered 6,7-dihydroxy analog of the potent actin inhibitor latrunculin A. Latrunculol A has exhibited greater cytotoxicity than latrunculin A against both murine and human colon tumor cell lines in vitro. Currently, there are no reports regarding the bioavailability of latrunculol A in vivo. This study was undertaken as a prelude to pharmacokinetic assessments and it is the first work where bioavailability of latrunculol A was studied. In the present work, a simple plasma preparation and a rapid HPLC method have been developed. Mouse plasma containing latrunculol A was first treated by acetonitrile and then centrifuged at 14,000 rpm at 4 °C for 25 min. The supernatant was injected in an HPLC system comprising a Waters Symmetry NH2 column, a mobile phase of acetonitrile/water (95/5, v/v), a flow rate of 1.0 mL/min, at 220 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 9 ng/mL, and a good precision with a coefficient variation of 1.65, 1.86, and 1.26% for 20, 400, and 800 ng/mL, respectively. With this simple method, excellent separation and sensitivity of latrunculol A are achieved, thus allowing a rapid analysis of the plasma samples for absorption, distribution, and metabolism studies

    Synthesis and Biological Evaluation of Novel N-phenyl-5-carboxamidyl Isoxazoles as Potential Chemotherapeutic Agents for Colon Cancer

    Get PDF
    Abstract A new series of isoxazole derivatives, N-phenyl-5-carboxamidyl isoxazoles, was investigated for their anticancer activity with solid tumor selectivity. Six N-phenyl-5-carboxamidylisoxazoles were chemically synthesized and evaluated by the in vitro disk-diffusion assay and IC 50 cytotoxicity determination. The results showed that one of the derivatives, compound 3, N-(4-chlorophenyl)-5-carboxamidyl isoxazole, was the most active against colon 38 and CT-26 mouse colon tumor cells with an IC 50 of 2.5 µg/mL for both cell lines. Western blot analysis showed that compound 3 significantly down-regulated the expression of phosphorylated STAT3 in both human and mouse colon cancer cells indicating that the mechanism of action for compound 3 may involve the inhibition of JAK3/STAT3 signaling pathways. Flow cytometric analysis with Annexin V staining showed that the death induced by compound 3 is mediated through cell necrosis and not apoptotic pathway. In summary, our results show that compound 3 is a new N-phenyl-5-carboxamidyl isoxazole with potential anticancer activity. Compound 3 inhibits the phosphorylation of STAT3, a novel target for chemotherapeutic drugs, and is worthy of further investigation as a potential chemotherapeutic agent for treating colon cancer

    CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma

    No full text
    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease

    The inhibition of cell proliferation and induction of apoptosis in pancreatic ductal adenocarcinoma cells by verrucarin A, a macrocyclic trichothecene, is associated with the inhibition of Akt/NF-кB/mTOR prosurvival signaling

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDA. Trichothecenes are powerful mycotoxins that inhibit protein synthesis and induce ribotoxic stress response in mammalian cells. Verrucarin A (VC-A) is a Type D macrocyclic mycotoxin which inhibited cell proliferation and induced apoptosis in breast cancer cells. However, the antitumor activity of VC-A for PDA cells has not been investigated. Here we show potent antitumor activity and the mechanism of action of VC-A in PDA cell lines. VC-A strongly inhibited the proliferation and arrested cells in the S phase of the cell cycle. The blocking of cell cycle progression by VC-A was associated with the inhibition of cell cycle regulatory proteins cyclin D1, cyclin E, cyclin-dependent kinases (cdks) cdk2, cdk4 and cdk inhibitor WAF1/21. VC-A induced apoptosis in PDA cells as indicated by the increased Annexin V FITC-binding, cleavage of poly(ADP-ribose) polymerase‑1 (PARP-1) and procaspases-3, -8 and -9. VC-A also induced mitochondrial depolarization and release of cytochrome c and it inhibited Bcl-2 family proteins that regulate apoptosis (Bcl-2, Bcl-xL, Bax and Bad). In addition, VC-A reduced the levels of inhibitors of apoptosis survivin and c-IAP-2. Finally, VC-A downregulated the expression of prosurvival phospho-Akt (p-Akt), nuclear factor κB (NF-κB) (p65) and mammalian target of rapamycin (p-mTOR) signaling proteins and their downstream mediators. Together, these results demonstrated strong antiproliferative and apoptosis-inducing activity of verrucarin A for PDA cells through cell cycle arrest and inhibition of the prosurvival (antiapoptotic) AKT/NF-κB/mTOR signaling
    corecore