27 research outputs found

    Provision of ancillary services by renewable hybrid generation in low frequency AC systems to the grid

    Get PDF
    Wind energy high penetration levels in power systems lead to continuous power imbalance due to the intermittent nature of wind power. This paper proposes and investigates different methods to enable a hybrid generation system to provide frequency support to the grid. The hybrid generation is 100% renewable and composed of a wind farm and hydropower plant (HPP) of comparable generation capacities, and they are interconnected through a Low Frequency AC system (LFAC). The grid–tie is composed of a Voltage-Source Converter based High-Voltage, Direct Current (VSC-HVDC) junction that acts as frequency changer to maintain the grid nominal frequency. The HPP provides two types of ancillary services: wind power smoothing and frequency drops mitigation to avoid the use of thermal generation and battery energy storage. The paper offers different control methods to provide the two AS with improved coordination between the different controls in the hybrid generation system and complying with the common requirements of Grid Codes. The results obtained show that the frequency at the LFAC can tolerate mild drops to provide frequency support to the grid. The controllers’ parameters have a clear impact on the frequency response at both systems. Simulation environment is MATLAB and Simulink

    Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.

    Get PDF
    Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications

    Coupling of the spatial distributions between sMRI and PET reveals the progression of Alzheimer’s disease

    Get PDF
    AbstractAmyloid-beta (Aβ) deposition and altered brain structure are the most relevant neuroimaging biomarkers for Alzheimer’s disease (AD). However, their spatial inconsistency was always confusing and misleading. Furthermore, the relationship between this spatial inconsistency and AD progression is unclear. The current study introduced a regional radiomics similarity network (R2SN) to map structural MRI and Aβ positron emission tomography (PET) images to study their cross-modal interregional coupling. A total of 790 participants (248 normal controls, 390 mild cognitive impaired patients, and 152 AD patients) with their structural MRI and PET images were studied. The results showed that global and regional R2SN coupling significantly decreased according to the severity of cognitive decline, from mild cognitive impairment to AD dementia. The global coupling patterns are discriminative between different APOE ε4, Aβ, and Tau subgroups. R2SN coupling was probed for relationships with neuropsychiatric measures and peripheral biomarkers. Kaplan–Meier analysis showed that lower global coupling scores could reveal worse clinical progression of dementia. The R2SN coupling scores derived from the coupling between Aβ and atrophy over individual brain regions could reflect the specific pathway of AD progression, which would be a reliable biomarker for AD

    Antiviral therapy for hepatitis virus-related hepatocellular carcinoma: current status and challenges

    No full text
    The incidence rate of hepatocellular carcinoma (HCC) is increasing around the world and tends to decrease in East Asia and several regions in China; however, China still has higher incidence rate and mortality rate of HCC than most countries. Studies have shown that long-term antiviral therapy can inhibit HBV replication to a very low level or help patients with HCV infection achieve sustained virologic response, which can further reduce the incidence rate of virus-related HCC. New evidence suggests that compared with nucleos(t)ide analogues, PEG-IFNα has a better effect of secondary prevention. Studies also indicate that interferons play an important role in tertiary prevention of virus-related HCC. This article reviews the epidemiological studies on virus-related HCC in recent years and the role of antiviral therapy in second and tertiary prevention and points out that adequate and effective antiviral therapy is the basis for preventing the development and recurrence of HCC

    Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset

    No full text
    Landsat 8/thermal infrared sensor (TIRS) is suffering from the problem of stray light that makes an inaccurate radiance for two thermal infrared (TIR) bands and the latest correction was conducted in 2017. This paper focused on evaluation of land surface temperature (LST) retrieval from Landsat 8 before and after the correction using ground-measured LST from five surface radiation budget network (SURFRAD) sites. Results indicated that the correction increased the band radiance at the top of the atmosphere for low temperature but decreased such radiance for high temperature. The root-mean-square error (RMSE) of LST retrieval decreased by 0.27 K for Band 10 and 0.78 K for Band 11 using the single-channel algorithm. For the site with high temperature, the LST retrieval RMSE of the single-channel algorithm for Band 11 even reduced by 1.4 K. However, the accuracy of two of three split-window algorithms adopted in this paper decreased. After correction, the single-channel algorithm for Band 10 and the linear split-window algorithm had the least RMSE (approximately 2.5 K) among five adopted algorithms. Moreover, besides SURFRAD sites, it is necessary to validate using more robust and homogeneous ground-measured datasets to help solely clarify the effect of the correction on LST retrieval

    Comparison and Analysis of Stellar Occultation Simulation Results and SABER-Satellite-Measured Data in Near Space

    No full text
    In this study, we analyze the accuracy of the stellar occultation technique to detect the oxygen number density and temperature in near space. Based on the validation of the algorithm related to stellar occultation using a single wavelength of 762 nm, the simulation and inversion are performed using the oxygen absorption A-band, and the results are compared with SABER observations to calculate the deviation. Then, the distribution of the detection accuracy with wavelength, latitude, and altitude is analyzed. The results show that the radiant transmittance of the basic observation varies significantly with wavelength and altitude, and it is not sensitive to a change of latitude. The inversion results of each wavelength at different latitudes can be combined, and it can be seen that the 754–769 nm band is preferred for oxygen and temperature detection. Therefore, analyzing the accuracy results of the specific wavelength 757.84 nm at different latitudes, the temperature accuracy can reach 0.1 K in the stratosphere at both low and high latitudes and 0.6–34 K at middle latitudes. The temperature detection accuracy in the mesosphere at each latitude reaches about a dozen K. The deviation of the inversion results at middle latitudes is larger in the thermosphere, and at the other two latitudes, it is about a few dozen K. From the analysis of relative deviation, excluding the deviation of 95–100 km, the deviation of other altitudes is within the ideal range, and the minimum can reach 0. The accuracy of the oxygen number density increases with latitude, and the relative deviation of the middle and high latitudes is around 10–20%. Based on the above results, it is concluded that the technique of starlight occultation exhibits high accuracy for detecting atmospheric parameters in the near space region, and the results lay the technical foundation for the independent development of stellar occultation

    Lower bound of entanglement of formation based on correlation matrix

    No full text
    The entanglement of formation (EOF), which quantifies the required minimally physical resources to prepare a quantum state, plays important roles in many quantum information processes. Due to the convex-roof definition, it is hard to find the explicit analytic formulae of EOF, except for some special quantum systems. The correlation matrix of a quantum state is closely related to entanglement property. In this paper, we use the Lagrange-multiplier approach to obtain an analytic lower bound of EOF for arbitrary dimensional bipartite states, which improves the previous conclusions. Numerical example shows that the bound is also valid for some PPT entangled states

    Comparison and Analysis of Stellar Occultation Simulation Results and SABER-Satellite-Measured Data in Near Space

    No full text
    In this study, we analyze the accuracy of the stellar occultation technique to detect the oxygen number density and temperature in near space. Based on the validation of the algorithm related to stellar occultation using a single wavelength of 762 nm, the simulation and inversion are performed using the oxygen absorption A-band, and the results are compared with SABER observations to calculate the deviation. Then, the distribution of the detection accuracy with wavelength, latitude, and altitude is analyzed. The results show that the radiant transmittance of the basic observation varies significantly with wavelength and altitude, and it is not sensitive to a change of latitude. The inversion results of each wavelength at different latitudes can be combined, and it can be seen that the 754–769 nm band is preferred for oxygen and temperature detection. Therefore, analyzing the accuracy results of the specific wavelength 757.84 nm at different latitudes, the temperature accuracy can reach 0.1 K in the stratosphere at both low and high latitudes and 0.6–34 K at middle latitudes. The temperature detection accuracy in the mesosphere at each latitude reaches about a dozen K. The deviation of the inversion results at middle latitudes is larger in the thermosphere, and at the other two latitudes, it is about a few dozen K. From the analysis of relative deviation, excluding the deviation of 95–100 km, the deviation of other altitudes is within the ideal range, and the minimum can reach 0. The accuracy of the oxygen number density increases with latitude, and the relative deviation of the middle and high latitudes is around 10–20%. Based on the above results, it is concluded that the technique of starlight occultation exhibits high accuracy for detecting atmospheric parameters in the near space region, and the results lay the technical foundation for the independent development of stellar occultation
    corecore