240 research outputs found
Discussion on the Democratic Value Orientation of International Law
Since the end of the Cold War, democratic values have become one of the core values of international law. In the current international law, the democracy as the value of international law is not yet become the legal norms of international law. The implementation of democratic values of international law should respect the sovereign value as a prerequisite and subordinate to the values of peace.Key words: International law; Democracy; Value orientation; Sovereign; Peac
Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images
In medical applications, the same anatomical structures may be observed in
multiple modalities despite the different image characteristics. Currently,
most deep models for multimodal segmentation rely on paired registered images.
However, multimodal paired registered images are difficult to obtain in many
cases. Therefore, developing a model that can segment the target objects from
different modalities with unpaired images is significant for many clinical
applications. In this work, we propose a novel two-stream translation and
segmentation unified attentional generative adversarial network (UAGAN), which
can perform any-to-any image modality translation and segment the target
objects simultaneously in the case where two or more modalities are available.
The translation stream is used to capture modality-invariant features of the
target anatomical structures. In addition, to focus on segmentation-related
features, we add attentional blocks to extract valuable features from the
translation stream. Experiments on three-modality brain tumor segmentation
indicate that UAGAN outperforms the existing methods in most cases.Comment: 9 pages, 4 figures, Accepted by MICCAI201
The Feasibility Study of Megavoltage Computed Tomographic (MVCT) Image for Texture Feature Analysis
Purpose: To determine whether radiomics texture features can be reproducibly obtained from megavoltage computed tomographic (MVCT) images acquired by Helical TomoTherapy (HT) with different imaging conditions.Methods: For each of the 195 textures enrolled, the mean intrapatient difference, which is considered to be the benchmark for reproducibility, was calculated from the MVCT images of 22 patients with early-stage non-small-cell lung cancer. Test–retest MVCT images of an in-house designed phantom were acquired to determine the concordance correlation coefficient (CCC) for these 195 texture features. Features with high reproducibility (CCC > 0.9) in the phantom test–retest set were investigated for sensitivities to different imaging protocols, scatter levels, and motion frequencies using a wood phantom and in-vitro animal tissues.Results: Of the 195 features, 165 (85%) features had CCC > 0.9. For the wood phantom, 124 features were reproducible in two kinds of scatter materials, and further investigations were performed on these features. For animal tissues, 108 features passed the criteria for reproducibility when one layer of scatter was covered, while 106 and 108 features of in-vitro liver and bone passed with two layers of scatter, respectively. Considering the effect of differing acquisition pitch (AcP), 97 features extracted from wood passed, while 103 and 59 features extracted from in-vitro liver and bone passed, respectively. Different reconstruction intervals (RI) had a small effect on the stability of the feature value. When AcP and RI were held consistent without motion, all 124 features calculated from wood passed, and a majority (122 of 124) of the features passed when imaging with a “fine” AcP with different RIs. However, only 55 and 40 features passed with motion frequencies of 20 and 25 beats per minute, respectively.Conclusion: Motion frequency has a significant impact on MVCT texture features, and features from MVCT were more reproducibility in different scatter conditions than those from CBCT. Considering the effects of AcP and RI, the scanning protocols should be kept consistent when MVCT images are used for feature analysis. Some radiomics features from HT MVCT images are reproducible and could be used for creating clinical prediction models in the future
Biogeographic Distribution Patterns of Bacteria in Typical Chinese Forest Soils
Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e. Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes (relative abundance > 5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca2+ (ECa2+) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than geographic dispersal limitation in determining the bacterial community structure in Chinese forest soils
Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists.
UnlabelledAlthough adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics.SignificanceAlthough stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics
Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
This was the first study to use genipin to cross-link collagen and chitosan.In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding.Key Projects in the National Science and Technology Pillar Program in the Eleventh Five-year Plan Period. Grant Number: 2006BA116B04Guangdong Natural Science Foundation. Grant Number: 07300602Natural Science Foundation Team Project of Guangdong. Grant Number: 4205786State Key Program of National Natural Science of China. Grant Number: 50732003National Basic Research Program of China. Grant Number: 2005CB62390
- …