7,320 research outputs found

    Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    Full text link
    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms are implemented on GPU to achieve a high computational efficiency. The reconstruction algorithm and the enhancement algorithm generate visually similar 4D-CBCT images, both better than the FDK results. Quantitative evaluations indicate that, compared with the FDK results, our reconstruction method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our enhancement method increases the CNR by 2.75~3.33 times. The enhancement method also removes over 80% of the streak artifacts from the FDK results. The total computation time is ~460 sec for the reconstruction algorithm and ~610 sec for the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table

    Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons

    Full text link
    We present a first-principles study of the migration and recombination of edge defects (carbon adatom and/or vacancy) and their influence on electrical conductance in zigzag graphene nanoribbons (ZGNRs). It is found that at room temperature, the adatom is quite mobile while the vacancy is almost immobile along the edge of ZGNRs. The recombination of an adatom-vacancy pair leads to a pentagon-heptagon ring defect structure having a lower energy than the perfect edge, implying that such an edge-defect can be formed spontaneously. This edge defect can suppresses the conductance of ZGNRs drastically, which provides some useful hints for understanding the observed semiconducting behavior of the fabricated narrow GNRs.Comment: 6 pages, 4 figures, to appear in PR

    High temperature ferrimagnetic semiconductors by spin-dependent doping in high temperature antiferromagnets

    Full text link
    To realize room temperature ferromagnetic (FM) semiconductors is still a challenge in spintronics. Many antiferromagnetic (AFM) insulators and semiconductors with high Neel temperature TNT_N are obtained in experiments, such as LaFeO3_3, BiFeO3_3, etc. High concentrations of magnetic impurities can be doped into these AFM materials, but AFM state with very tiny net magnetic moments was obtained in experiments, because the magnetic impurities were equally doped into the spin up and down sublattices of the AFM materials. Here, we propose that the effective magnetic field provided by a FM substrate could guarantee the spin-dependent doping in AFM materials, where the doped magnetic impurities prefer one sublattice of spins, and the ferrimagnetic (FIM) materials are obtained. To demonstrate this proposal, we study the Mn-doped AFM insulator LaFeO3_3 with FM substrate of Fe metal by the density functional theory (DFT) calculations. It is shown that the doped magnetic Mn impurities prefer to occupy one sublattice of AFM insulator, and introduce large magnetic moments in La(Fe,Mn)O3_3. For the AFM insulator LaFeO3_3 with high TNT_N = 740 K, several FIM semiconductors with high Curie temperature TC>T_C > 300 K and the band gap less than 2 eV are obtained by DFT calculations, when 1/8 or 1/4 Fe atoms in LaFeO3_3 are replaced by the other 3d, 4d transition metal elements. The large magneto-optical Kerr effect (MOKE) is obtained in these LaFeO3_3-based FIM semiconductors. In addition, the FIM semiconductors with high TCT_C are also obtained by spin-dependent doping in some other AFM materials with high TNT_N, including BiFeO3_3, SrTcO3_3, CaTcO3_3, etc. Our theoretical results propose a way to obtain high TCT_C FIM semiconductors by spin-dependent doping in high TNT_N AFM insulators and semiconductors

    Dirac Fermion in Strongly-Bound Graphene Systems

    Get PDF
    It is highly desirable to integrate graphene into existing semiconductor technology, where the combined system is thermodynamically stable yet maintain a Dirac cone at the Fermi level. Firstprinciples calculations reveal that a certain transition metal (TM) intercalated graphene/SiC(0001), such as the strongly-bound graphene/intercalated-Mn/SiC, could be such a system. Different from free-standing graphene, the hybridization between graphene and Mn/SiC leads to the formation of a dispersive Dirac cone of primarily TM d characters. The corresponding Dirac spectrum is still isotropic, and the transport behavior is nearly identical to that of free-standing graphene for a bias as large as 0.6 V, except that the Fermi velocity is half that of graphene. A simple model Hamiltonian is developed to qualitatively account for the physics of the transfer of the Dirac cone from a dispersive system (e.g., graphene) to an originally non-dispersive system (e.g., TM).Comment: Apr 25th, 2012 submitte
    • …
    corecore