35,597 research outputs found
Improved Successive Cancellation Decoding of Polar Codes
As improved versions of successive cancellation (SC) decoding algorithm,
successive cancellation list (SCL) decoding and successive cancellation stack
(SCS) decoding are used to improve the finite-length performance of polar
codes. Unified descriptions of SC, SCL and SCS decoding algorithms are given as
path searching procedures on the code tree of polar codes. Combining the ideas
of SCL and SCS, a new decoding algorithm named successive cancellation hybrid
(SCH) is proposed, which can achieve a better trade-off between computational
complexity and space complexity. Further, to reduce the complexity, a pruning
technique is proposed to avoid unnecessary path searching operations.
Performance and complexity analysis based on simulations show that, with proper
configurations, all the three improved successive cancellation (ISC) decoding
algorithms can have a performance very close to that of maximum-likelihood (ML)
decoding with acceptable complexity. Moreover, with the help of the proposed
pruning technique, the complexities of ISC decoders can be very close to that
of SC decoder in the moderate and high signal-to-noise ratio (SNR) regime.Comment: This paper is modified and submitted to IEEE Transactions on
Communication
Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6
Pressure can tune material's electronic properties and control its quantum
state, making some systems present disconnected superconducting region as
observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6
superconductor (Tc of 11.5 K), applying pressure first Tc increases and then
suppresses and the superconductivity of this compound is eventually disappeared
at about 18 GPa. Here, we report a theoretical finding of the re-emergence of
superconductivity in heavily compressed CaC6. The predicted phase III (space
group Pmmn) with formation of carbon nanofoam is found to be stable at wide
pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure
is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has
bad metallic behavior, indicating again departure from superconductivity.
Re-emerged superconductivity in compressed CaC6 paves a new way to design
new-type superconductor by inserting metal into nanoporous host lattice.Comment: 31 pages, 12 figures, and 4 table
- …
