35,597 research outputs found

    Improved Successive Cancellation Decoding of Polar Codes

    Full text link
    As improved versions of successive cancellation (SC) decoding algorithm, successive cancellation list (SCL) decoding and successive cancellation stack (SCS) decoding are used to improve the finite-length performance of polar codes. Unified descriptions of SC, SCL and SCS decoding algorithms are given as path searching procedures on the code tree of polar codes. Combining the ideas of SCL and SCS, a new decoding algorithm named successive cancellation hybrid (SCH) is proposed, which can achieve a better trade-off between computational complexity and space complexity. Further, to reduce the complexity, a pruning technique is proposed to avoid unnecessary path searching operations. Performance and complexity analysis based on simulations show that, with proper configurations, all the three improved successive cancellation (ISC) decoding algorithms can have a performance very close to that of maximum-likelihood (ML) decoding with acceptable complexity. Moreover, with the help of the proposed pruning technique, the complexities of ISC decoders can be very close to that of SC decoder in the moderate and high signal-to-noise ratio (SNR) regime.Comment: This paper is modified and submitted to IEEE Transactions on Communication

    Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6

    Get PDF
    Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.Comment: 31 pages, 12 figures, and 4 table
    corecore