23,101 research outputs found

    Electric dipole sheets in BaTiO3_{3}/BaZrO3_{3} superlattices

    Full text link
    We investigate two-dimensional electric dipole sheets in the superlattice made of BaTiO3_{3} and BaZrO3_{3} using first-principles-based Monte-Carlo simulations and density functional calculations. Electric dipole domains and complex patterns are observed and the complex dipole structures with various symmetries (e.g. Pma2, Cmcm and Pmc2_{1}) are further confirmed by density functional calculations, which are found to be almost degenerate in energy with the ferroelectric ground state of the Amm2 symmetry, therefore strongly resembling magnetic sheets. More complex dipole patterns, including vortices and anti-vortices, are also observed, which may constitute the intermediate states that overcome the high energy barrier of different polarization orientations previously predicted by Lebedev\onlinecite{Lebedev2013}. We also show that such system possesses large electrostrictive effects that may be technologically important

    Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    Get PDF
    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studies on heat transfer at heterogeneous land surfaces, multiangular thermal infrared (TIR) observations offer the opportunity of overcoming fundamental difficulties in modeling sparse canopies. Three case studies were performed on the estimation of the component temperatures of foliage and soil. The first one included the use of multi-temporal field measurements at view angles of 0°, 23° and 52°. The second and third one were done with directional ATSR observations at view angles of 0° and 53° only. The first one was a contribution to the Inner-Mongolia Grassland Atmosphere Surface Study (IMGRASS) experiment in China, the second to the Hei He International Field Experiment (HEIFE) in China and the third one to the Southern Great Plains 1997 (SGP 1997) experiment in Oklahoma, United States. The IMGRASS experiment provided useful insights on the applicability of a simple linear mixture model to the analysis of observed radiance. The HEIFE case study was focused on the large oasis of Zhang-Ye and led to useful estimates of soil and vegetation temperatures. The SGP 1997 contributed a better understanding of the impact of spatial heterogeneity on the accuracy of retrieved foliage and soil temperatures. Limitations in the approach due to varying radiative and boundary layer forcing and to the difference in spatial resolution between the forward and the nadir view are evaluated through a combination of modeling studies and analysis of field data

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear

    Get PDF
    A multi-scale model validated with out-of-plane shear testing is presented to analyse thick composite structural failure. Key features of this multi-scale analysis approach are inclusion of shear non linearity and modelling the response at a sub-laminate level whilst the structural failure is predicted at a ply level. Based on this multi-scale approach, a user-defined FORTRAN subroutine (VUMAT) has been written for ABAQUS/EXPLICIT solver and is used to model the shear nonlinearity and intra-laminar failure. In addition, a cohesive zone model is used to predict the inter-laminar delamination. The modelling has been employed to predict the failure processes for Iosipescu shear test specimens with different fibre orientations. The results show that both the failure mode and the load-displacement trace for finite element simulations agree closely with the experimental findings. This demonstrates the validity of this multi-scale, nonlinear, three-dimensional model for thick laminates. In particular, for the Iosepescu shear test, the effect of the fibres being aligned along the length of the specimen or out-of-plane is investigated as well as different dimensions of the specimen. These simulations are validated by experiments using Digital Image Correlation (DIC)

    Developing a Low-Cost Force Treadmill via Dynamic Modeling

    Get PDF
    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of “walk-on-the-spot motion,” it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach

    On the Convergence of Ritz Pairs and Refined Ritz Vectors for Quadratic Eigenvalue Problems

    Full text link
    For a given subspace, the Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a Ritz value that converges to the desired eigenvalue unconditionally but the Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz vector that is mathematically different from the Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.Comment: 20 page

    Assessing Postural Stability Via the Correlation Patterns of Vertical Ground Reaction Force Components

    Get PDF
    Background Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). Methods In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. Results In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18–24 and 65–73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. Conclusions By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    Prokineticin 2 Is a Target Gene of Proneural Basic Helix-Loop-Helix Factors for Olfactory Bulb Neurogenesis

    Get PDF
    Prokineticin 2, a cysteine-rich secreted protein, regulates diverse biological functions including the neurogenesis of olfactory bulb. Here we show that the PK2 gene is a functional target gene of proneural basic helix-loop-helix (bHLH) factors. Neurogenin 1 and MASH1 activate PK2 transcription by binding to E-box motifs on the PK2 promoter with the same set of E-boxes critical for another pair of bHLH factors, CLOCK and BMAL1, in the regulation of circadian clock. Our results establish PK2 as a common functional target gene for different bHLH transcriptional factors in mediating their respective functions
    • …
    corecore