25,637 research outputs found

    Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages

    No full text
    Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues

    Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles

    Get PDF
    As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    Origin of the Three-body Parameter Universality in Efimov Physics

    Full text link
    In recent years extensive theoretical and experimental studies of universal few-body physics have led to advances in our understanding of universal Efimov physics [1]. The Efimov effect, once considered a mysterious and esoteric effect, is today a reality that many experiments in ultracold quantum gases have successfully observed and continued to explore [2-14]. Whereas theory was the driving force behind our understanding of Efimov physics for decades, recent experiments have contributed an unexpected discovery. Specifically, measurements have found that the so-called three-body parameter determining several properties of the system is universal, even though fundamental assumptions in the theory of the Efimov effect suggest that it should be a variable property that depends on the precise details of the short-range two- and three-body interactions. The present Letter resolves this apparent contradiction by elucidating unanticipated implications of the two-body interactions. Our study shows that the three-body parameter universality emerges because a universal effective barrier in the three-body potentials prevents the three particles from simultaneously getting close to each other. Our results also show limitations on this universality, as it is more likely to occur for neutral atoms and less likely to extend to light nuclei.Comment: 11 pages; 9 figures. Includes Supplementary Materia

    Dependence of quantum correlations of twin beams on pump finesse of optical parametric oscillator

    Full text link
    The dependence of quantum correlation of twin beams on the pump finesse of an optical parametric oscillator is studied with a semi-classical analysis. It is found that the phase-sum correlation of the output signal and idler beams from an optical parametric oscillator operating above threshold depends on the finesse of the pump field when the spurious pump phase noise generated inside the optical cavity and the excess noise of the input pump field are involved in the Langevin equations. The theoretical calculations can explain the previously experimental results, quantitatively.Comment: 27 pages, 8 figure
    • …
    corecore