26,706 research outputs found

    Gaussian approximation based mixture reduction for near optimum detection in MIMO systems

    Get PDF

    A cryogenic dc-dc power converter for a 100kW synchronous HTS generator at liquid nitrogen temperatures

    Get PDF
    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the ‘cold’ rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (~20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter’s switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation

    Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV

    Full text link
    The near-side ridge structure in the (Delta phi)-(Delta eta) correlation observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be explained by the momentum kick model in which the ridge particles are medium partons that suffer a collision with the jet and acquire a momentum kick along the jet direction. Similar to the early medium parton momentum distribution obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the early medium parton momentum distribution in pp collisions at 7 TeV exhibits a rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at the LHC, Palaiseau, May 30-June2, 201

    Fast and Reliable IP Recovery for Overlay Routing in Mission Critical Message Oriented Middleware

    Get PDF

    A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters

    Get PDF
    We present a geometrical methodology to interpret the periodical light curves of Soft Gamma Repeaters based on the magnetar model and the numerical arithmetic of the three-dimensional magnetosphere model for the young pulsars. The hot plasma released by the star quake is trapped in the magnetosphere and photons are emitted tangent to the local magnetic field lines. The variety of radiation morphologies in the burst tails and the persistent stages could be well explained by the trapped fireballs on different sites inside the closed field lines. Furthermore, our numerical results suggests that the pulse profile evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap
    corecore