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Abstract— The optimal “soft” symbol detection for spatial
multiplexing multiple input multiple output (MIMO) system with
known channel information requires knowledge of the marginal
posterior symbol probabilities for each antenna. The calculation
of these quantities requires the evaluation of the likelihood
function of the system for all possible symbol combinations,
which is prohibitive for large systems. It is however most often the
case that most of the transmitted symbol combinations contribute
only very little to these marginal posterior probabilities. We
propose in this paper a suboptimal procedure which identifies the
most significant symbol combinations via a sequential algorithm
with Gaussian Approximation (SGA). Simulation results show
that our method can approach the optimal a posteriori proba-
bility detector (APP) performance while being less complex than
comparable suboptimal algorithms, such as the sphere decoder
(SD). We further demonstrate that as opposed to the SD the
complexity and memory requirements of our algorithm are fixed,
therefore easing practical implementation.

Index Terms— Space-time processing, multiuser detection,
Gaussian approximation, probability data association.

I. INTRODUCTION

THE BENEFITS of MIMO transmission are well appre-
ciated by now. Likewise, a plethora of detection algo-

rithms have been proposed for so-called spatial multiplexing
(V-BLAST) schemes. Amongst the frontrunners are various
flavours of sphere decoders (SD) [1] and algorithms based on
the Probabilistic Data Association (PDA) principle [2] [3] [4]
[5] . PDA based algorithms perform well (close to the optimal
APP decoder) for simple modulation schemes i.e. BPSK and
QPSK, but these results do not carry on to higher order
modulations [4]. SD type algorithms tend to perform very well
but suffer from the fact that their complexity is a random
variable which depends on the channel realization. In this
contribution we develop a novel algorithm that builds on the
PDA principle, which possesses the advantage of performing
near optimally for larger modulations, while having a fixed
complexity, typically lower than that of a SD.

II. SYSTEM MODEL

Consider a spatial multiplexing MIMO system with NT

transmit antennas and NR ≥ NT receive antennas. At each
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time instant, NT symbols x def= [x1, x2, . . . , xNT
]T ([∗]T

means transpose), taken from a modulation constellation A =
{a1, a2, . . . , aN}, are transmitted from each antenna. Pertain-

ing to them are NR observations y def= [y1, y2, . . . , yNR
]T . The

relationship between x and y is :

y = Hx + n (1)

where H is the NR × NT channel matrix with h(i, j) as its
(i, j)-th entry. The quantity h(i, j) represents the channel gain
from transmit antenna j to receive antenna i. Vector n is a
NR×1 zero-mean complex circular symmetric Gaussian noise
with covariance matrix σ2I. We will use [∗]H for the transpose
conjugate of a matrix or vector.

The task of a space-time decoder is to estimate the trans-
mitted symbol x from the observation y given the chan-
nel state information H. More precisely we are interested
in the marginal posterior distributions p(xj |y,H) for j =
1, 2, . . . , NT (in what follows, conditioning on H will be
implicit, and omitted).

The exact computation of the marginal posterior distribu-
tions p(xj |y) requires an exhaustive search in the space of all
possible symbol combinations,

p(xj |y) =
∑

x−j∈D−j

p(x−j , xj |y), (2)

where x−j refers to all the antennas except antenna j and
D−j is the set which contains the NNT −1 possible values of
x−j . This is often referred to as the a posteriori probability
(APP) probability, and requires prohibitive computations for
large systems.

However, most of the terms in the sum above are typically
very small and contribute very little to the final result. It is
therefore natural to look for a subset of M dominant symbol
combinations ΘNT

def= {(x(m)
1 , . . . , x

(m)
NT

),m = 1, . . . ,M}
which will allow for the following truncated sum,

M∑
m=1

p(x(m)
1 , . . . , xj , . . . , x

(m)
NT

|y), (3)

to be a good approximation of p(xj |y).
Note that the selection of these M most significant symbol

combinations would in principle require the computation of
the joint posterior distributions of the NNT possible symbol
combinations, which is precisely what we would like to
avoid. To circumvent the complexity problem, we develop
a suboptimal mixture reduction method which proceeds in
a sequential manner and approximates some of the required
quantities using Gaussian approximations.

1089-7798/05$20.00 c© 2005 IEEE
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III. IDENTIFICATION OF THE M MOST SIGNIFICANT

SYMBOL COMBINATIONS

Assume that for j ≥ 1, at the (j−1)-th step of the algorithm

we have identified M significant combinations Θj−1
def=

{x(m)
1 , . . . , x

(m)
j−1,m = 1, 2, . . . ,M} for antenna 1, 2, . . . , j −

1. We would like to calculate p(x(m)
1 , . . . , x

(m)
j−1, xj |y) for all

m = 1, . . . ,M and xj ∈ A in order to select Θj which
contains M symbol combinations of the largest probabilities,
among the MN possibilities. However this quantity requires
prohibitive computations, and instead we choose a Gaussian
approximation.

Provided that HHH is invertible one can rewrite Eq. (1) as
follows,

ỹ = x + ñ =
j∑

k=1

xkek +
NT∑

k=j+1

xkek + ñ def=
j∑

k=1

xkek + n̂j ,

(4)
where ñ is a Gaussian noise with zero mean and covariance
Λ = σ2(HHH)−1, ỹ = (HHH)−1HHy.

Now one models the distribution of n̂j as a Gaus-
sian noise with matching mean and variance. One can
then calculate an approximated joint symbol probability
p̃(x(m)

1 , . . . , x
(m)
j−1, xj |y) of all the MN possible symbol com-

binations for m = 1, 2, . . . , M and xj ∈ A

p̃(x(m)
1 , . . . , x

(m)
j−1, xj |y)

∝ p̃(y|x(m)
1 , . . . , x

(m)
j−1, xj)p(xj)

j−1∏
k=1

p(x(m)
k )

≈ exp(−wHΠ−1
j w)p(xj)

j−1∏
k=1

p(x(m)
k ) def= ψm(xj) (5)

where w = ỹ− [x(m)
1 , . . . , x

(m)
j−1, xj , x0, . . . , x0]T , Πj = Λ+

γ
∑NT

k=j+1 ekeT
k (ek is a column vector whose elements are

all zeroes, but the k-th which is 1), x0 and γ are the mean and
variance of the modulation alphabet A with respect to uniform
distribution respectively, p(xj) is the prior information.

Then M symbol combinations with the largest ψm(xj)
are selected among the MN possible symbol combinations,
resulting in a new set Θj .

We illustrate the algorithm with an example shown in Fig.
1. Here NT = 3, NR ≥ 3 and A = {a1, a2, a3, a4}. Our aim
is to identify the M = 2 most significant symbol combinations
from the 64 possibilities. The possible symbol combinations
can be represented as a trellis in Fig. 1(a): the two thick lines
indicate the actual 2 most significant symbol combinations,
i.e. (a4, a4, a4) and (a1, a3, a1).

In the first step, j = 1 and we calculate ψ0(x1) for
x1 ∈ A according to Eq. (5), i.e. x0 is assumed to have
been transmitted on antenna 2 and 3. Assume that ψ0(a1)
and ψ0(a4) are the two largest ψ0(x1) for x1 ∈ A: we set
Θ1 = {a1, a4}. This step is illustrated in Fig. 1(b). In the
second step j = 2 and we compute the 8 possible values
of ψm(x2) for m = 1, 2 and x2 ∈ A while x0 is assumed
transmitted by antenna 3. Assuming that ψ1(a3) and ψ2(a4)
are the 2 largest values among the 8 possibilities, we set
Θ2 = {(a4, a4), (a1, a3)}. This step is illustrated in Fig.

1(c). This procedure is again repeated in order to identify
Θ3 = {(a4, a4, a4), (a1, a3, a1)}.

IV. ALGORITHM SUMMARY

To sum up, the algorithm proceeds as follows:

1) Initialization: Compute ỹ, x0 and γ, and set Θ0 = ∅,
2) M most significant symbol combinations selection. For

j = 1 compute ψ0(x1) for x1 ∈ A.

a) For 1 < j ≤ NT , compute ψm(xj) for all the
elements in Θj−1 and xj ∈ A according to Eq.
(5).

b) Select the min(M,N j) symbol combinations
which have the largest ψm(xj) and form the set
Θj .

3) Computation of the marginal symbol probability for
antenna j = 1, 2, . . . , NT :

a) For m = 1, . . . , M and xj ∈ A compute

φm(xj) = exp(−(Hv)HHv/σ2)p(xj)
∏
k �=j

p(x(m)
k ),

(6)
with v = ỹ−[x(m)

1 , . . . , x
(m)
j−1, xj , x

(m)
j+1, . . . x

(m)
NT

]T

b) Compute the symbol probabilities for xj ∈ A,

p̃(xj |y) =
∑
m

φm(xj)/
∑
xj

∑
m

φm(xj). (7)

c) (Optional)Perform Step 2b with ψm replaced with
φm.

Note that the optional Step 3c was only found useful for small
values of M , and did not lead to improvements otherwise. It
is typically beneficial in circumstances where significant paths
might have been prematurely deleted.

V. COMPLEXITY REDUCTION

The complexity of SGA can be reduced to O(N3
T ) by

using the Sherman-Morrison-Woodbury formula in order to
sequentially update Π−1

j in Eq. (5). More precisely, for j =
1, . . . , NT − 2, we define respectively pj and π(j,j) the j-
th column and j-th diagonal element of Π−1

j . The backward
recursion proceeds as follows

Π−1
j = (Πj+1 + γej+1eT

j+1)
−1 = Π−1

j+1 −
γpj+1pH

j+1

1 + γπ(j+1,j+1)
,

(8)
The recursion is initialized with Π−1

NT −1 given by:

Π−1
NT −1 = (Λ + γeNT

eT
NT

)−1 =
1
σ2

HHH − γ��H

σ4 + γσ2ζ
,

(9)
where � is the NT -th column of HHH and ζ is the NT -
th diagonal element of HHH. Note also that the calculations
of Steps 2a and 3a, which are the most time consuming, are
suitable for parallel implementation.
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Fig. 1. An example of identification of the 2 most significant symbol combinations via SGA.
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Fig. 2. Left: uncoded system. Right: coded system.

VI. SIMULATION RESULTS

In this section, we compare the performance of SGA for
different values of M with that of the optimal APP decoder,
conventional MMSE and the PDA detector. We also compare
the complexity of SGA with that of SD.

In all our simulations, we set NT = NR = 4 and
consider a 16QAM modulation (N = 16) with 1152 bits
per frame before channel coding. The SNR is defined as
E{||Hx||2}/E{||n||2} = γNT /σ2.

A 1/2 rate Turbo Coder with generators 7 and 5 in octal
notation is used at the transmitter and a BCJR channel decoder
with 4 iterations is used at the receiver. There are no outer
iterations, i.e. the MIMO decoder processes the data only
once. For each SNR we randomly generated 104 channel
realizations, which were processed by all algorithms. The
uncoded and coded performance of the APP, MMSE, PDA
and SGA algorithms with M ∈ {5, 10, 20} is presented in Fig.
2. It can be seen that the performance of SGA with M = 20
approaches that of APP in both the coded and uncoded cases.

Similar near optimal performance can be obtained with the
SD [1], but in contrast to the SGA, its complexity is affected
by the channel realizations. In order to illustrate this we have
carried out a comparative Monte Carlo study of the distribution
of the number of real operations (ADD+MUL) of SGA and
a Max-Log-MAP efficient implementation of SD [6] using
the setting described above. The results are summarized in
Fig. 3 where we present the 20, 40, 60 and 80 percentiles of
(ADD+MUL) for SD and the constant (ADD+MUL) for SGA
for different values of M , both as a function of the SNR. We
observe that the complexity of SD is much larger than that of
SGA, especially at low SNR levels.
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Fig. 3. Complexity comparison.

VII. CONCLUSIONS

We present a new sub-optimal algorithm for space time
decoding of MIMO systems, based on the identification of
M most significant symbol combinations and a likelihood
approximation. Simulation results demonstrate that our algo-
rithm achieves near optimal performance with the advantage
of having complexity which is both a constant as a function
of SNR and lower than that of the popular SD algorithm,
especially at low SNR levels. Finally the structure of the
algorithm makes it ideal for parallel implementation.
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