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Depth-First and Breadth-First Search Based
Multilevel SGA Algorithms for Near Optimal

Symbol Detection in MIMO Systems
Yugang Jia, Student Member, IEEE, Christophe Andrieu, Robert J. Piechocki, Member, IEEE,

and Magnus Sandell, Member, IEEE

Abstract— The multilevel structure of the N -QAM modulation
constellations is exploited to significantly reduce the complexity of
the sequential Gaussian approximation (SGA) algorithm [1] for
near optimal symbol detection in spatial multiplexing multiple-
input multiple-output (MIMO) system. We propose two mul-
tilevel SGA algorithms (MSGA) which are based on depth-
first search (DFS) and breadth-first search (BFS) respectively.
Additionally, an important methodological contribution to this
multilevel technique is proposed where the mismatch between the
pseudo symbols and the true symbols is taken into consideration
for the computation of posterior probabilities of symbol combina-
tions. We justify this from a theoretical perspective as well as with
numerical results. Simulation results show that the performance
of the two proposed multilevel algorithms can approach that
of the optimal a posteriori probability (APP) detector while its
total computation cost is at most 81% and 48% of that of the
original SGA algorithm for 16QAM and 64QAM modulation
MIMO systems with 4 transmit/receive antennas respectively.

Index Terms— Complexity reduction, Gaussian approximation,
multilevel modulation, multiple-input multiple-output (MIMO)
systems.

I. INTRODUCTION

THE use of multiple-input multiple-output (MIMO) archi-
tectures [2] promises to achieve high capacity for wireless

communication channels in rich multipath environments. High
order QAM constellations are usually adopted to improve
spectral efficiency in such systems, which makes it difficult to
use maximum likelihood (ML) detection due to its intractable
complexity.

Computational efficient symbol detection algorithms have
been widely explored to achieve the substantial perfor-
mance gains promised by spatial multiplexing MIMO sys-
tems with QAM constellations. The various sphere decoders
(SD) [3] [4] [5] [6] tend to approach the optimal performance
efficiently but suffer from the fact that their complexity is
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channel and SNR dependent [7]. Other approaches include
algorithms based on the Gaussian approximation principle,
a.k.a. probabilistic data association (PDA) [8] [9] [10], but
these results do not carry on to high order modulations
(16QAM/64QAM).

The sequential Gaussian approximation (SGA) algorithm
[1] has been demonstrated to achieve near optimal per-
formance with fixed complexity and memory requirement.
The key step of the SGA algorithm consists of sequentially
identifying a reduced number M of highly probable symbol
combinations for antennas 1, . . . , j with j = 1, . . . , NT . In
each step, only the M significant symbol combinations are
selected via evaluating the likelihoods of all MN possibilities
(N is the number of symbols in modulation alphabet A) and
kept for the next step, until the NT -th antenna is reached.
Then, the M significant symbol combinations for all the
antennas are used in order to compute the marginal posterior
probabilities. This results in a significant complexity reduction
and very good performance has been observed in computer
simulations. Although the complexity of the SGA algorithm
is less than that of the SD [12], it does not lend itself to
an efficient implementation for MIMO systems with large
constellation size, in particular due to the evaluation and
sorting of the likelihoods involved in the algorithm.

Fortunately, large QAM constellations exhibit a natural
multilevel structure. The N -QAM constellations can be de-
composed into L

def= log4(N) levels 1 where in each level a
set of pseudosymbols can be constructed from pseudosymbols
set in a lower level.

The multilevel structure of the N -QAM constellation has
been widely exploited in the literature for complexity reduc-
tion purpose. In [13] [14] [15], an iterative tree search (ITS)
algorithm is proposed for turbo detection of MIMO systems.
The ITS scheme is based on a reduced search space via the
use of the M algorithm [17] in conjunction with the use of
multilevel bit mappings. It is also shown that the complexity of
ITS per bit is only dependent on the the length of information
blocks and independent of the constellation size N . In [16],
a multilevel sampling scheme is proposed to reduce the
complexity of the mixture Kalman filter for adaptive detection
of 16-QAM symbols over flat-fading channels. The simulation
results show that the proposed multilevel mixture Kalman filter
achieves a performance similar to that of the original mixture

1L can only be an integer.

1536-1276/08$25.00 c© 2008 IEEE
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Kalman filter, but with a much lower complexity.
In this paper, we propose two reduced complexity SGA

algorithms that exploit the natural hierarchical approximating
structure which has been suggested for QAM constellations.
The first proposed multilevel scheme is based on a depth-
first search (DFS) which has been proposed previously in the
literature [13] [14] [15] [16], but not in the context of the
SGA algorithm. The second one is based on the breadth-first
search (BFS) which has not been suggested in the multilevel
literature. Both algorithms (MSGA-DFS and MSGA-BFS) aim
to select a set of M most significant symbol combinations for
computation of the posterior marginal symbol probabilities.
The complexity burden of computation and sorting of likeli-
hoods involved in the MSGA algorithms is only 1/2 and 3/16
of that of the SGA algorithm for MIMO systems with 16QAM
and 64QAM constellations respectively. The exact complexity
reduction will be explained later.

Additionally, in the course of this research, we have made
an important methodological contribution to the multilevel
literature, for which we have developed a theoretical justifi-
cation. For both MSGA algorithms (MSGA-DFS and MSGA-
BFS), the mismatch between the pseudosymbols and the true
symbols is taken into consideration for the computation of pos-
terior probabilities of symbol combinations. More specifically,
a penalty term is derived from the Gaussian approximation to
compensate for this mismatch. This is a significant advance in
the area of multilevel approximation where the likelihoods of
symbol combinations with pseudosymbols are computed as if
the pseudosymbols were truly in the constellation. The need
for this penalty in the approximation is justified theoretically
and its effectiveness is illustrated via computer simulations.

This paper is organized as follows. Section II describes
the system model. The multilevel structure of the N -QAM
constellation exploited by our algorithms is illustrated in Sec-
tion III. The identification step of the two proposed multilevel
SGA algorithms (MSGA-BFS, MSGA-DFS) are described
on examples in Section IV and Section V respectively. In
Section VI, simulation results are provided to illustrate the
near-optimal performance of the proposed algorithms and we
compare the complexities of the proposed algorithms with that
of the SGA algorithm. In addition, a complexity reduction
method via recursive update is explained in Appendix B.

II. SYSTEM MODEL

Consider a spatial multiplexing MIMO system with NT

transmit antennas and NR ≥ NT receive antennas. At each
time instant, NT symbols x def= [x1, x2, . . . , xNT

]T ([∗]T
means transpose), taken from a modulation constellation A =
{a1, a2, . . . , aN}, are transmitted from each antenna. Pertain-

ing to them are NR observations y def= [y1, y2, . . . , yNR
]T . The

relationship between x and y is :

y = Hx + n (1)

where H is the NR × NT channel matrix with h(i, j) as its
(i, j)-th entry. The quantity h(i, j) represents the channel gain
from transmit antenna j to receive antenna i. The vector n is
a NR × 1 vector of zero-mean complex circular symmetric
Gaussian noise with covariance matrix σ2

nI. We use [∗]∗ and

[∗]H for the conjugate and transpose conjugate of a matrix or
vector respectively.

The task of a space-time decoder is to estimate the transmit-
ted symbol x from the observation y given the channel state
information H. More precisely, we are interested in the mar-
ginal posterior distributions p(xj |y,H) for j = 1, 2, . . . , NT

(in what follows, conditioning on H will be implicit, and
omitted).

The exact computation of the marginal posterior distribu-
tions p(xj |y) which requires an exhaustive search of all the
possible symbol combinations can be efficiently approximated
via the M most significant symbol combinations:

p(xj |y) =
∑

x−j∈D−j

p(x−j , xj |y) (2)

≈
M∑

m=1

p(x(m)
1 , . . . , xj , . . . , x

(m)
NT

|y),

where x−j refers to all the antennas except antenna j and
D−j is the set which contains the NNT −1 possible values of
x−j .

In the SGA algorithm [1], the identification of M most
significant symbol combinations involves the computation and
sorting of MN likelihoods for NT steps.

In the following sections, we will explain the multilevel
structure of the N -QAM constellation and develop two multi-
level SGA algorithms with depth-first search and breadth-first
search to identify M significant symbol combinations with this
multilevel structure. The computation of the marginal symbol
probabilities from those M identified symbol combinations is
the same as Step 3 in [1, Section IV] and will be omitted here.

III. MULTILEVEL STRUCTURE OF THE N -QAM
MODULATION CONSTELLATION

Fig. 1 describes the natural multilevel approximation of a
64-QAM symbol constellation A. The 64 dots represent the
constellation A. We call this level l = 1. The 16 squares
represent the 16-QAM approximation of constellation A used
by our method at level l = 2. Effectively each square is the
center of gravity of the four closest symbols from A (the
dots). The four stars represent the 4-QAM approximation of
the aforementioned 16-QAM constellation (the squares), and
as a result the 4-QAM approximation of A at level l = 3.
Note that these approximations define a quadtree, see Fig. 2.
We will later on refer to parents and children on this tree.

More precisely, the definitions for the pseudosymbols are
as follows. The set of pseudosymbols at the l-th level of
approximation is defined as follows:

Al
def= {al,1, . . . , al,Nl

}

for l = 1, . . . , L where L
def= log4N and Nl

def= N41−l. Note
that at the lowest level where l = 1, A1 is exactly A and
a1,k = ak, k = 1, . . . N . The pseudo symbol al,s (here the
parent) in set Al is the mean value of 4 elements (here the
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Fig. 1. Multilevel structure of 64QAM constellation.

children) in a specific set As
l−1, which is a subset of the lower

level set Al−1:

al,s = 0.25
∑

al−1,k∈As
l−1

al−1,k (3)

for l = 2, . . . , L, s = 1, . . . , Nl. Set As
l is a subset of Al such

that
⋃

k A
k
l = Al and Ak

l

⋂
An

l = ∅ where k, n = 1, . . . , Nl+1

and k �= n.
As it is seen in the above definition of the pseudosymbols

and the hierarchical structure of the constellation, a specific
symbol ak ∈ A is only coupled to its ancestor al,s at the l-th
level 2. To this end, we model the joint probability as:

p(ak, al,s)
def= p(ak)I(ak is a descendant of al,s) (4)

where I(.) is an indicator function for k = 1, . . . , N , l =
2, . . . , L and s = 1, . . . , Nl. Thus, the marginal probability
for pseudo symbol al,s is as follows:

p (al,s) =
∑

ak∈A

p(ak)I(ak is a descendant of al,s) (5)

for s = 1, . . . , Nl and l = 2, . . . , L.

IV. MULTILEVEL SGA DETECTOR WITH DEPTH-FIRST

SEARCHING

A. Basic Idea

Suppose that we have symbol sequences up to the (j −
1)-th antenna for system with 64QAM constellation. For the
j-th antenna, the SGA algorithm evaluates 64 ×M symbol
combinations for selection.

2The relationship can also be interpreted as follows: the conditional
probability p(al,s|ak) is 1 if al,s is an ancestor of ak , or 0 otherwise.
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Fig. 2. An example of hierarchical structure of 64QAM constellation.

In the MSGA-DFS algorithm, the selection consists of three
steps. One first considers the approximation at level l = L = 3
(the stars), which results in 4×M likelihood estimations. The
M significant symbol combinations are kept. Then we move
on to the better approximation at level l = 2. We constrain
the search of the significant symbols at level l = 2 to the
children of the symbols selected at level l = 3, where only
4 × M likelihoods are evaluated and sorted. Typically this
is expected to reduce significantly the number of likelihood
evaluations required. Then we repeat this down to the lowest
approximation level l = 1. The total number of likelihoods
that are evaluated in this process is 12 ×M , which is only
3/16 of that of the SGA algorithm.

A key element to the success of this process consists of
taking into account the constellation approximation in the
computation of the likelihood of symbol sequences with a
pseudo symbol. We will describe the detailed algorithm and
explain the effect of a multilevel constellation approximation
theoretically in the next subsection.

B. Algorithm Description

Suppose that M significant combinations Θd
j,l+1

def=

{
(
x

(m)
1 , . . . , x

(m)
j−1, x

(m)
j,l+1

)
,m = 1, 2, . . . ,M} have been ob-

tained for antenna 1, 2, . . . , j at the (l + 1)-th level. Then
at the l-th level, only 4M pseudo symbol combinations
(x(m)

1 , . . . , x
(m)
j−1, xj,l) are considered for m = 1, . . . ,M ,

where xj,l ∈ Am
l is such that the mean of the elements in

Am
l is x(m)

j,l+1, to form Θl
j,1.

In order to select the pseudo symbol combinations,
we must evaluate the approximate probabilities of
p(x(m)

1 , . . . , x
(m)
j−1, xj,l|y) for m = 1, . . . ,M and xj,l ∈ Am

l .

Define ỹ def= (HHH)−1HHy, then from Eq.(1), we have:

ỹ =
j−1∑
k=1

xkek + xj,lej + (xj − xj,l)ej +
NT∑

k=j+1

xkek + ñ

︸ ︷︷ ︸
n̂d

j,l

(6)

where the vector ek is a column vector whose elements are
all zeroes, but the k-th which is 1.

Before proceeding to the next step, we would like to
compute the mean and variance of different items in the above
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equation. The Gaussian noise ñ has zero mean and variance
Λ = σ2

n(HHH)−1. The mean and variance of xk w.r.t.
a uniform distribution are zero and γ = 1/N

∑
as∈A |as|2

respectively. The mean and variance of xj − xj,l is zero
and γl = γ − 1

Nl

∑
al,k∈Al

|al,k|2 respectively. The detailed
computation of γl is given in Appendix A.

As a result, the mean and variance of n̂d
j,l (the pseudo-

covariance vanishes in this case) are zero and Πd
j,l where

Πd
j,l = Πj + γlejeT

j and Πj = Λ + γ
∑NT

k=j+1 ekeT
k .

To evaluate the approximate probability of
p(x(m)

1 , . . . , x
(m)
j−1, xj,l|y), one models the distribution of

n̂d
j,l as a moment-matched Gaussian distribution and uses the

following approximation:

p(x(m)
1 , . . . , x

(m)
j−1, xj,l|y)

∝ p
(
y|x(m)

1 , . . . , x
(m)
j−1, xj,l

)
p (xj,l)

j−1∏
k=1

p(x(m)
k )

≈ exp
(
−

(
w(m)

j−1 − xj,lej

)H (
Πd

j,l

)−1

(
w(m)

j−1 − xj,lej

) )
p (xj,l)

j−1∏
k=1

p(x(m)
k )

def= ψd
m(xj,l) (7)

where 3 w(m)
j−1

def= ỹ − ∑j−1
k=1 x

(m)
k ek.

It is worth commenting on that we use γ and γl in the above
approximated likelihoods computation. The term γ accounts
for the uncertainty introduced by the undetected symbols from
antennas j + 1, . . . , NT , which has been suggested in the
SGA algorithm. The term γl accounts for the additional uncer-
tainty introduced by using the pseudosymbols xj,l, which has
never been proposed before (even in the multilevel literature
[13] [14] [15] [16]).

Taking γl into consideration for computing the likelihoods
is an important methodological contribution to the multilevel
literature. In order to further explain the effect of this term
from a theoretical perspective, we can obtain the following
equation using the Sherman-Morrison-Woodbury formula:(

w(m)
j−1 − xj,lej

)H

(Πd
j,l)

−1
(
w(m)

j−1 − xj,lej

)

=
(
w(m)

j−1 − xj,lej

)H (
Πd

j,1 + γlejeT
j

)−1

(
w(m)

j−1 − xj,lej

)

=
(
w(m)

j−1 − xj,lej

)H

(Πd
j,1)

−1
(
w(m)

j−1 − xj,lej

)
−�(m)

j,l , (8)

�
(m)
j,l

def=
(
w(m)

j−1 − xj,lej

)H (
γ−1

l + [(Πd
j,1)

−1](j,j)
)−1

(
[(Πd

j,1)
−1](:,j)

(
[(Πd

j,1)
−1](:,j)

)H
)

(
w(m)

j−1 − xj,lej

)
3For notational simplicity, we drop j from ψd

m(.). The notation ψd
0(.)

is used for the first antenna where no previous symbol combinations are
available.

where [
(
Πd

j,1

)−1](:,j) and [
(
Πd

j,1

)−1](j,j) denote the j-th

column and diagonal element of matrix
(
Πd

j,1

)−1
respectively.

For l = 1 where γ1 = 0, xj,1 = x1 ∈ A, Πd
j,1 = Πj and

�
(m)
j,l = 0, the above equation is identical to that correspond-

ing to the SGA algorithm. If l �= 1 and hence γl �= 0, the
extra penalty term �

(m)
j,l , which is derived from the Gaussian

approximation, compensates for the mismatch between the
multilevel pseudosymbols xj,l ∈ Al and the actual transmitted
symbols which take values in A. The beneficial effect of
taking this penalty term into consideration is confirmed in
simulations.

Finally the M symbol combinations with the largest
ψd

m(xj,l) are selected among the 4M possible symbol com-
binations, resulting in a new set Θd

j,l. For the last step l = 1
for which γ1 = 0 and p (xj,1) = p(xj), a set of M signif-

icant symbol combinations Θd
j,1 = {

(
x

(m)
1 , . . . , x

(m)
j

)
,m =

1, . . . ,M} is obtained. An example is given in the next
subsection to illustrate the MSGA-DFS identification step.

C. Summary of the MSGA-DFS Identification Step

1) Compute the zero forcing output ỹ and initialize the set
of symbol combinations Θd

0,1 = ∅, M̃ = 0. Compute
ψd

0(x1,1) for x1,1 ∈ A and select the M̃ = min(M,N)
largest ones 4 for set Θd

1,1. For 1 < j ≤ NT ,

a) Compute ψd
m(xj,L) according to Eq. (??) and

Eq. (8) for all the elements in Θd
j−1,1 =

{
(
x

(m)
1 , . . . , x

(m)
j−1

)
,m = 1, . . . , M̃} and xj,L ∈

AL,
b) Select M̃ = min(M, 4(j−1)L+1) symbol com-

binations which have the largest ψd
m(xj,L) for

set Θd
j,L = {

(
x

(m)
1 , . . . , x

(m)
j−1, x

(m)
j,L

)
,m =

1, . . . , M̃}. For l = L− 1, . . . , 1,

i) Compute ψd
m(xj,l) according to Eq. (??) for

all the elements in Θd
j,l+1 and xj,l ∈ Am

l (the

elements in set Am
l are children of x(m)

j,l+1) for
m = 1, . . . , M̃ ,

ii) Select the M̃ = min(M, 4jL−l+1) symbol
combinations which have the largest ψd

m(xj,l)
for Θd

j,l = {
(
x

(m)
1 , . . . , x

(m)
j−1, x

(m)
j,l

)
,m =

1, . . . , M̃}.

V. MULTILEVEL SGA DETECTOR WITH BREADTH-FIRST

SEARCHING

A. Basic Idea

The multilevel algorithms proposed in the last section
(MSGA-DFS) as well as in the literature (the multilevel mix-
ture Kalman filter [16] and the ITS detector [13] [14] [15])
are all based on the depth-first search described in the last
section.

In this section, we propose a breadth-first search based
multilevel SGA algorithm (MSGA-BFS). The MSGA-BFS
algorithm consists of considering the multilevel approximation

4For the first antenna, we compute the approximate likelihoods of all N
possible symbols without the DFS based multilevel approximation.
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for the pseudosymbols from all the antennas at level l = L
first, and then refine the approximations at levels l = L −
1, . . . , 1 sequentially.

Again we use a 64QAM constellation for the purpose of
illustration. Firstly, we consider all the possible pseudosym-
bol combinations at level 3. There are 4NT pseudo symbol
combinations (4 possible pseudosymbols per antenna) in total.
The sequential identification procedure proposed in the SGA
algorithm is employed to identify the set of M significant
pseudo symbol combinations taking into account the multi-
level approximation, i.e. the term γL as explained in the last
section. The total cost for this identification procedure comes
from the computing and sorting of 4M likelihoods for NT

steps. Then we move down to the next level with the set of
the 3rd level pseudo symbol combinations defined as follows:

Θb
NT ,L

def= {
(
x

(m)
1,L , . . . , x

(m)
NT ,L

)
,m = 1, . . . ,M}

At the second level where l = 2, we evaluate the 4M
symbol combinations for antennas j = 1, . . . , NT sequen-
tially as follows. For j = 1, we evaluate likelihoods of the
4M symbol combinations (x1,l, x

(m)
2,l+1, . . . , x

(m)
NT ,l+1) with the

constraint that x1,l is a child of x(m)
1,l+1 for m = 1, . . . ,M , and

only keep the M pseudo symbol combinations with the largest
likelihoods for the next step where j = 2. The evaluation of
the likelihoods here also takes into consideration the mismatch
between the pseudosymbols and true symbols (the term γl).
The above evaluation and selection step is repeated until the
last antenna is reached where j = NT .

The above procedure is repeated for l = 1 and finally the
M significant symbol combinations can be obtained for the
computation of the posterior symbol probabilities. The total
number of likelihoods that are computed and sorted is the
same as that of the MSGA-DFS algorithm.

In the next section, a detailed description of the MSGA-BFS
algorithm is presented.

B. Algorithm Description

1) Selection Procedure for the Highest Level (l = L): The
aim of the identification procedure at the highest level l = L
is to select the set of M pseudo symbol combinations:

Θb
j,L = {

(
x

(m)
1,L , . . . , x

(m)
j,L

)
,m = 1, . . . ,M}

from all the possible 4NT pseudo symbol combinations for
j = 1, . . . , NT . The identification procedure is similar to that
of the SGA algorithm where in the j-th step, the likelihoods of
4M symbol combinations are computed and sorted to select
the M highly probable ones for the next step, given the set of
pseudo symbol combinations from the j − 1-th step defined
as follows:

Θb
j−1,L = {

(
x

(m)
1,L , . . . , x

(m)
j−1,L

)
,m = 1, . . . ,M}.

To compute the required likelihoods, we first rewrite the
system model as follows:

ỹ =
j∑

k=1

xk,Lek +
j∑

k=1

(xk − xk,L) +
NT∑

k=j+1

xkek + ñ

︸ ︷︷ ︸
n̂b

j,L

. (9)

where the mean and variance of xk w.r.t. the uniform distrib-
ution are zero and γ respectively. The mean and variance of
xk − xk,L are zero and γL respectively. Thus, the variance 5

of n̂b
j,L is Πb

j,L
def= Λ + γL

∑j
k=1 ekeT

k + γ
∑NT

k=j+1 ekeT
k .

Now one models the distribution of n̂b
j,L as a

moment-matched Gaussian distribution and calculates
p

(
x

(m)
1,L , . . . , x

(m)
j−1,L, xj,L|y

)
as follows:

p
(
x

(m)
1,L , . . . , x

(m)
j−1,L, xj,L|y

)

∝ p
(
y|x(m)

1,L , . . . , x
(m)
j−1,L, xj,L

)
p(xj,L)

j−1∏
k=1

p
(
x

(m)
k,L

)

≈ exp
(
−

(
w(m)

j−1,L − xj,Lej

)H (
Πb

j,L

)−1

(
w(m)

j−1,L − xj,Lej

))
p(xj,L)

j−1∏
k=1

p
(
x

(m)
k,L

)
def= ψb

m(xj,L) (10)

where w(m)
j−1,L

def= ỹ − ∑j−1
k=1 x

(m)
k,L ek.

Then M symbol combinations with largest ψb
m(xj,L) are se-

lected for Θb
j,L. This procedure is repeated for j = 1, . . . , NT

until Θb
NT ,L is formed.

2) Selection Procedure for the l-th Level: At the l-
th level for l = L − 1, . . . , 2, 1, the aim is to identify
the M significant pseudo symbol combinations Θb

NT ,l =

{
(
x

(m)
1,l , . . . , x

(m)
NT ,l

)
,m = 1, . . . ,M} using the pseudo sym-

bol combinations Θb
NT ,l+1 = {

(
x

(m)
1,l+1, . . . , x

(m)
NT ,l+1

)
,m =

1, . . . ,M} identified in the last step.
This identification step can be decomposed

into j = 1, . . . , NT steps where in the j-
th step, 4M approximate posterior probabilities
p

(
x

(m)
1,l , . . . , x

(m)
j−1,l, xj,l, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1|y

)
are

computed with the constraints that xj,l ∈ A
(m)
l

for m = 1, . . . ,M . Then M pseudo symbol
combinations with largest approximate probabilities
are selected for the j + 1-th step and the set Θb

j,l =

{
(
x

(m)
1,l , . . . , x

(m)
j−1,l, x

(m)
j,l , x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1

)
,m =

1, . . . ,M} is obtained.
The approximated posterior probabilities

p
(
x

(m)
1,l , . . . , x

(m)
j−1,l, xj,l, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1|y

)
can

be computed via a Gaussian approximation. First we rewrite
the decorrelating model as follows:

ỹ =
j−1∑
k=1

xk,lek + xj,lej +
NT∑

k=j+1

xk,l+1ek

+
j∑

k=1

(xk − xk,l)ek +
NT∑

k=j+1

(xk − xk,l+1)ek + ñ

︸ ︷︷ ︸
n̂b

j,l

.

(11)

5The terms Λ, γ and γL are defined in the previous section.
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where both xk − xk,l and xk − xk,l+1 have zero means and
their variance are γl and γl+1 respectively. Thus the variance
of n̂b

j,l is Πb
j,l

def= Λ + γl

∑j
k=1 ekeT

k + γl+1

∑NT

k=j+1 ekeT
k .

Now one models the distribution of n̂b
j,l as a moment-

matched Gaussian distribution:

p
(
x

(m)
1,l , . . . , x

(m)
j−1,l, xj,l, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1|y

)
∝ p

(
y|x(m)

1,l , . . . , x
(m)
j−1,l, xj,l, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1

)

p(xj,l)
j−1∏
k=1

p
(
x

(m)
k,l

) NT∏
k=j+1

p
(
x

(m)
k,l+1

)

≈ exp
(
−

(
w(m)

j−1,l −
(
xj,l − x

(m)
j,l+1

)
ej

)H (
Πb

j,l

)−1

(
w(m)

j−1,l −
(
xj,l − x

(m)
j,l+1

)
ej

) )

p(xj,l)
j−1∏
k=1

p
(
x

(m)
k,l

) NT∏
k=j+1

p
(
x

(m)
k,l+1

)

def= ψb
m(xj,l) (12)

where w(m)
j−1,l = ỹ − ∑j−1

k=1 x
(m)
k,l ek − ∑NT

k=j x
(m)
k,l+1ek.

The above procedure is repeated for l = L − 1, . . . , 2, 1
and finally Θb

NT ,1 can be obtained for the computation of the
marginal symbol probabilities.

C. Summary of the MSGA-BFS Identification Step

1) Compute the zero forcing output ỹ and initialize the set
of symbol combinations Θb

0,L = ∅, M̃ = 0. For j = 1
compute ψb

0(x1,L) for x1,L ∈ AL.

a) For 1 < j ≤ NT , compute ψb
m(xj,L) for all the

elements in Θb
j−1,L = {

(
x

(m)
1,L , . . . , x

(m)
j−1,L

)
,m =

1, . . . , M̃} and xj,L ∈ AL according to Eq. (10).
b) Select the M̃ = min(M, 4j) symbol combinations

which have the largest ψb
m(xj,L) for Θb

j,L =

{
(
x

(m)
1,L , . . . , x

(m)
j,L

)
,m = 1, . . . , M̃}.

2) For l = L− 1, . . . , 2, 1, Set Θb
0,l = Θb

NT ,l+1:

a) For 1 ≤ j ≤ NT , compute ψb
m(xj,l) according

to Eq. (12) for 4M̃ symbol combinations(
x

(m)
1,l , . . . , x

(m)
j−1,l, xj,l, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1

)
where xj,l ∈ Am

l (the elements in set Am
l are

children of x(m)
j,l+1) and

(
x

(m)
1,l , . . . , x

(m)
j−1,l, x

(m)
j,l+1, x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1

)

∈ Θb
j−1,l for m = 1, . . . , M̃ ,

b) Select the M̃ = min(M, 4(L−l)NT +j)
symbol combinations which have
the largest ψb

m(xj,l) for Θb
j,l =

{
(
x

(m)
1,l , . . . , x

(m)
j,l , x

(m)
j+1,l+1, . . . , x

(m)
NT ,l+1

)
,m =

1, . . . , M̃}.
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Fig. 3. Uncoded BER performance of the DFS and BFS algorithms for a
16QAM, 4×4 serial system. Both of the algorithms fail to take into account
the additional uncertainty from the use of pseudosymbols.

VI. SIMULATION RESULTS

In this section, we demonstrate the near-optimal perfor-
mance of the proposed MSGA-DFS and MSGA-BFS algo-
rithms in various scenarios and the importance of the correc-
tion term of the multilevel approximation. In all our simula-
tions, we set NT = NR = 4 and consider 16QAM/64QAM
modulation systems with 1152 bits per frame before channel
coding. The SNR is defined as E{||Hx||2}/E{||n||2} =
γNT /σ

2
n.

A 1/2 rate turbo code with polynomials 7 and 5 is used at
the transmitter and a BCJR channel decoder with 4 iterations
is used at the receiver. There are no outer iterations, i.e. the
MIMO decoder processes the data only once. For each SNR
we randomly generate 5×104 channel realizations, which were
processed by all algorithms.

A. Effect of the Gaussian Approximation

The effect of the Gaussian approximation is investigated
via comparison with two algorithms termed the depth-first
search (DFS) and breadth-first search (BFS) algorithms. Both
algorithms (DFS and BFS) are with Gaussian approximation
variance term γ, but without proper Gaussian approximation
for multilevel pseudo symbols.

1) The DFS algorithm is similar to the MSGA-DFS algo-
rithm described in section IV-C except that the variance
terms and γl, l = L, . . . , 2 are set to 0.

2) The BFS algorithm is similar to the MSGA-BFS algo-
rithm described in section V-C except that the variance
terms γl, l = L, . . . , 2 are set to 0.

Fig. 3 and Fig. 4 shows the uncoded BER performance of
DFS and BFS with M = 20 for a 16QAM, 4 × 4 system
and M = 40 for a 64QAM, 4 × 4 system respectively. It is
seen that both algorithms (DFS,BFS) experience error floors
and perform worse than that of SD in high SNR region (the
interference is significant) and for 64QAM constellation (the
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Fig. 4. Uncoded BER performance of the DFS and BFS algorithms for a
64QAM, 4×4 serial system. Both of the algorithms fail to take into account
the additional uncertainty from the use of pseudosymbols.
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Fig. 5. BER performance of the MSGA-DFS and MSGA-BFS algorithms
for a 16QAM, 4 × 4 system.

variance term γl is large) 6.

The variance term γl,
(
Πd

j,l

)−1

and
(
Πb

j,l

)−1

can be com-
puted once for a block with constant H over the block. The
amount of additional complexity required by considering vari-
ance term γl is 1 addition for each computation of ψd

m(xj,l)
in Eq. (14) for the MSGA-DFS algorithm and ψb

m(xj,l) in Eq.
(16) and Eq. (17) for the MSGA-DFS algorithm. As a result,
the additional complexity is negligible (less than 1%) in total.

B. Performance Comparison of MSGA-DFS and MSGA-BFS
Algorithms

The uncoded and coded performance of the a poste-
rior probability (APP), complex formulation PDA algorithm
(CPDA) [10], SGA, MSGA-DFS and MSGA-BFS algorithms
with M = 20 is presented in Fig. 5 for a 16QAM 4 × 4
system. It is seen that the performance of MSGA-DFS and

6It is observed in the simulations that the likelihoods of symbol combina-
tions becomes smaller and smaller (near to numerical precision in Matlab) in
high SNR levels for the BFS algorithm with 64QAM . Thus, the selection
step becomes inaccurate and the performance of the BFS algorithm is severely
degraded with increasing SNR.
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Fig. 6. BER performance of the MSGA-DFS and MSGA-BFS algorithms
for a 64QAM, 4 × 4 system.

MSGA-BFS approaches that of SGA in both the uncoded and
coded cases with M = 20 respectively. Both MSGA-DFS and
MSGA-BFS with M = 20 works nearly as well as the APP.

Fig. 6 shows performance of the Max-log SD [12]7, SGA,
MSGA-DFS and MSGA-BFS for 64QAM, 4×4 system. In the
uncoded case, performance of the MSGA and SGA algorithms
is slightly worse than that of SD for high SNR levels. It is
also noticed that performance of the MSGA-BFS algorithms
is slightly better than that of the MSGA-DFS algorithm (with
the same M ). In the coded case, the performance of the SD
algorithm is similar to that of the SGA and MSGA algorithms
with M = 40.

C. Complexity Comparison

Table I shows the algebraic complexity of the SGA algo-
rithm and MSGA algorithms (MSGA-DFS, MSGA-BFS)8 for
selection of M symbol combinations for one antenna. It is seen
that the comparisons required in the MSGA algorithms should
be significantly smaller than that in SGA algorithm. Table II
shows the number of real operations (MUL+ADD+COMP)
per time instant for the SGA algorithm, the SD algorithm
[12] and the proposed MSGA-DFS/MSGA-BFS algorithms
for 4×4, 16QAM/64QAM systems. The number of operations
of the SD algorithm is averaged over 1000 channel realizations
with SNR=16 dB for 16QAM constellation and SNR=24dB
for 64QAM constellation respectively.

It is noticed that the complexities of the three SGA based
algorithms (SGA,MSGA-DFS,MSGA-BFS) are much lower
than the average complexity of the SD algorithm. The com-
plexity of the MSGA algorithms is only around 81% and 48%
of that of the original SGA algorithm for the 16QAM and
64QAM systems respectively.

7The SD algorithm [12] used here is a benchmark which has been shown
superior to standard list SD [4]. There are many further improvements about
SD with pre-processing and post-processing methods proposed recently. But
we opt for a standard implementation.

8The recursive updating method proposed in Appendix B is used to reduce
the complexity of the SGA, MSGA-DFS and MSGA-BFS algorithms. It is
assumed that the heap sorting algorithm is used for partial sorting in the
SGA, SGA-DFS and SGA-BFS algorithms, which has a average complexity
of O (MN log(MN))
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TABLE I

OPERATIONS COMPARISON PER IDENTIFICATION PROCEDURE FOR ONE ANTENNA

ADD MUL COMP(average)

SGA M(4NT + 2N + 2) M(4NT + 3N + 3) O (MN log(MN))

MSGA-DFS,MSGA-BFS ML(4NT + 10) ML(4NT + 15) O (L4M log(4M))

TABLE II

OPERATIONS COMPARISON PER TIME INSTANT FOR A 4 × 4,16QAM/64QAM MIMO SYSTEM

16QAM 64QAM

SGA20 MSGA-DFS20 MSGA-BFS20 SD(16dB) SGA40 MSGA-DFS40 MSGA-BFS40 SD(24dB)

ADD 6930 6050 6076 198088 34946 26786 26862 584778

MUL 8887 8587 8618 148566 53411 38251 38349 438584

COMP 3878 1143 1143 3096 57616 5654 5654 9137

Total 19395 15780 15837 349750 145973 70691 70865 1032500

VII. CONCLUSIONS

In this paper, two multilevel SGA algorithms with
depth-first searching (MSGA-DFS) and breadth-first search-
ing (MSGA-BFS) are proposed to reduce the complexity
of the original SGA algorithm for near-optimal detection
of MIMO system with higher order QAM constellations
(16QAM/64QAM).

The two methods exploit the multilevel structure of QAM
constellations to reduce the effect of large constellation size on
computation and sorting. Simulation results demonstrate that
both of the algorithms can achieve near-optimal (APP) perfor-
mance in both coded and uncoded systems for a complexity
which is only around 81% and 48% of that of the original
SGA algorithm for MIMO system with 4 transmit and receive
antennas and 16QAM, 64QAM modulation constellations,
respectively.

VIII. APPENDIX

A. Computation of γl

The detailed computation of γl is given as follows:

γl = V ar(xj − xj,l)
= E|xj |2 +E|xj,l|2 − E(xjx

∗
j,l) − E(x∗jxj,l)

= γ +
1
Nl

∑
al,k∈Al

|al,k|2

−
∑

xj,l∈Al

x∗j,l
∑

xj∈A

xjp(xj , xj,l)

−
∑

xj,l∈Al

xj,l

∑
xj∈A

x∗jp(xj , xj,l)

= γ +
1
Nl

∑
al,k∈Al

|al,k|2 − 2 ∗ 4l−1

N

∑
al,k∈Al

|al,k|2

= γ − 1
Nl

∑
al,k∈Al

|al,k|2.

where the joint probability p(xj , xl,k) is given in Eq. (4), the
mean and variance of xj,l w.r.t. a uniform distribution are
zero and 1

Nl

∑
al,k∈Al

|al,k|2 respectively for l = 1, . . . , L.
These calculations can straightforwardly be altered in order to
consider the case where a non-uniform prior is used, such as
in a Turbo decoding framework.

B. Complexity Reductions

In this section, we propose recursively update methods
to reduce the complexity of the proposed MSGA-DFS and
MSGA-BFS algorithms via the matrix inversion lemma.

1) Recursive Update of ψd
m(xj,l): The initialization of the

MSGA-DFS algorithm for j = 1 is the same as for the SGA
algorithm which computes ψd

0 (x1,1) and is as follows:

ψd
0 (x1,1) = exp

(
− (ỹ − x1,1e1)

H (
Πd

1,1

)−1

(ỹ − x1,1e1)

)

p (x1,1)

∝ exp
(
2


(
x1,1ỹH [

(
Πd

1,1

)−1
](:,1)

)
− |x1,1|2 [

(
Πd

1,1

)−1
](1,1)

)
p (x1,1) (13)

with x1,1 = x1 ∈ A and Πd
1,1 = Π1.

Then M̃ = min(M,N) symbols x
(m)
1,1 with the largest

ψd
0 (x1,1) for m = 1, . . . , M̃ are selected and stored for next

step.
With Θd

j−1,1 = {(x(m)
1 , . . . , x

(m)
j−1)} and

ψd
m

(
x

(m)
j−1,1

)
=

exp
(
−

(
w(m)

j−1

)H (
Πd

j−1,1

)−1
w(m)

j−1

) j−1∏
k=1

p
(
x

(m)
k

)
,

obtained from the last step, the ψd
m (xj,l) in Eq. (13) can

be computed recursively for l = L, . . . , 1, j = 2, . . . , NT as
follows:

ψd
m (xj,l)

= exp
(
−

(
w(m)

j−1 − xj,lej

)H (
Πd

j,l

)−1

(
w(m)

j−1 − xj,lej

) )
p(xj,l)

j−1∏
k=1

p(x(m)
k )

= ψd
m

(
x

(m)
j−1,1

)
exp

(
− ζd

j,l

∣∣∣η(m)
j,l

∣∣∣2 + 2

(
xj,lη

(m)
j,l

)

− |xj,l|2 [
(
Πd

j,l

)−1
](j,j)

)
p(xj,l),

(14)
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η
(m)
j,l =

(
w(m)

j−1

)H

[(Πd
j,l)

−1](:,j),

ζd
j,l =

(
(γl+1 − γl)−1 + [(Πd

j,l)
−1](j,j)

)−1
.

The following matrix inversion lemma is used in the above
equation:

(
Πd

j,l

)−1
=

(
Πd

j−1,1

)−1
+ζd

j,l[(Π
d
j,l)

−1](:,j)
(
[(Πd

j,l)
−1](:,j)

)H

for j = 2, . . . , NT .

Note that ψd
m

(
x

(m)
j−1,1

)
is stored in the last level l =

1 for the j − 1-th antenna and the computation of η
(m)
j

dominates the complexity. So the total complexity of the
MSGA-DFS identification step excluding partial sorting and
block operations (for constant channels H over one block) is
O(MN2

T ).
2) Recursive Update of ψb

m(xj,l): The initialization of the
MSGA-BFS identification procedure is different to that of
the MSGA-DFS algorithm. The computation of ψb

m(x1,L) for
xj,L ∈ AL is as follows:

ψb
0 (x1,L)

= exp
(
− (ỹ − x1,Le1)

H (
Πb

1,L

)−1
(ỹ − x1,Le1)

)
p (x1,L)

∝ exp
(
2


(
x1,LỹH [

(
Πb

1,L

)−1
](:,1)

)
− |x1,L|2 [

(
Πb

1,L

)−1
](1,1)

)
p (x1,L) (15)

with Πd
1,L = Π1 + γLe1eT

1 . Then M̃ = min(M, 4) symbols

x
(m)
1,L with largest ψb

0 (x1,L) for m = 1, . . . , M̃ are selected
and stored for next step.

With Θb
j−1,L = {(x(m)

1,L , . . . , x
(m)
j−1,L) and

ψb
m

(
x

(m)
j−1,L

)
=

j−1∏
k=1

p
(
x

(m)
k,L

)

exp
(
−

(
w(m)

j−1,L

)H (
Πb

j−1,L

)−1
w(m)

j−1,L

)

obtained from the last step, the ψb
m (xj,L) in Eq. (10) can be

computed recursively for j = 2, . . . , NT similar to Eq. (14)
as in Eq. (16).

It is easy to obtain the recursive updating of ψb
m (xj,l) in

Eq.(12) for l =, L−1, . . . , 1 and j = 1, . . . , NT as in Eq.(17)
with ψb

m

(
x

(m)
0,l

)
= ψb

m

(
x

(m)
NT ,l+1

)
.

It is seen that the total complexity of the MSGA-BFS identi-
fication step excluding the partial sorting and block operations
(for constant channels H over one block) is O(MN2

T ) which
is the same as that of the MSGA-DFS algorithm.
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