23 research outputs found

    Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau

    Get PDF
    Plant environmental DNA extracted from lacustrine sediments (sedimentary DNA, sedDNA) has been increasingly used to investigate past vegetation changes and human impacts at a high taxonomic resolution. However, the representation of vegetation communities surrounding the lake is still unclear. In this study, we compared plant sedDNA metabarcoding and pollen assemblages from 27 lake surface-sediment samples collected from alpine meadow on the central-eastern Tibetan Plateau to investigate the representation of sedDNA data. In general, the identified components of sedDNA are consistent with the counted pollen taxa and local plant communities. Relative to pollen identification, sedDNA data have higher taxonomic resolution, thus providing a potential approach for reconstructing past plant diversity. The sedDNA signal is strongly influenced by local plants while rarely affected by exogenous plants. Because of the overrepresentation of local plants and PCR bias, the abundance of sedDNA sequence types is very variable among sites, and should be treated with caution when investigating past vegetation cover and climate based on sedDNA data. Our finding suggests that sedDNA analysis can be a complementary approach for investigating the presence/absence of past plants and history of human land-use with higher taxonomic resolution

    Preservation of sedimentary plant DNA is related to lake water chemistry

    Get PDF
    Little is currently known about preservation of plant DNA in lake sediments. Most prior information originates from laboratory experiments while systematic field-based studies are still lacking. Here, we used the “g” and “h” universal primers for the P6 loop region of the chloroplast trnL (UAA) intron to amplify plant DNA from 219 lake surface sediments from China and Siberia. We introduce (i) the percentage of sequence counts with the best identity ≄95%, (ii) weighted average identity, (iii) weighted average DNA fragment length, and iv) rarefied richness of terrestrial seed plants of plant DNA metabarcoding as proxies for sedimentary DNA preservation and relate them to five environmental variables (lake water conductivity, lake water pH, mean July air temperature, and sampling depth, lake size) using boosted regression tree (BRT) analyses. Our results suggest that lake water chemical characteristics, that is, electrical conductivity and pH, are the most important variables for the preservation of plant DNA in lake sediments. Intermediate water conductivities (100–500 ΌS cm−1) and neutral to slightly alkaline water pH (7–9) may facilitate plant DNA preservation. Furthermore, deep lakes seem to support plant DNA preservation as indicated by relatively high rarefied richness. We also find high rarefied richness in small lakes compared with large lakes, but this result needs to be assessed by more studies in the future. None of our BRT models shows that mean July air temperature is a key variable to limit plant DNA preservation. To conclude, our results suggest that sedimentary DNA studies can preferentially select deep lakes characterized by intermediate water conductivities and neutral to slightly alkaline pH conditions

    Vegetation and glacier dynamics are sensitive to summer (not winter) warming and the evidence for larch refugia in the ‘Northern Pole of Cold’ inferred from sedimentary ancient DNA and geochemistry

    Get PDF
    Climate seasonality critically influences the functioning and dynamics of ecosystems in continental areas. The ecological importance of winter temperatures on high-latitude vegetation changes has recently been argued to be largely overlooked in comparison to summer temperatures. The Oymyakon region from eastern Siberia, with its strong continentality of extremely cold winters and moderately warm summers, is ideally suited to study the response of past vegetation to seasonal temperature changes based on long ecological time-series. However, few paleorecords are available from this area. The history of regional glacial activity and potential plant refugia since Marine Isotope Stage (MIS) 3 is not well understood. Here, we present geochemical and plant DNA metabarcoding records retrieved from a sediment core from Lake Ulu in the Oymyakon region, which provides detailed information on glacier and vegetation dynamics over the last 43 cal. ka BP. Our results suggest that glacial fluctuations were primarily driven by summer insolation, and Lake Ulu was likely initiated by glacial retreat during MIS 3. The catchment experienced multiple glacial advance/retreat cycles until the Last Glacial Maximum, and the glaciers fully retreated by 20 cal. ka BP. In addition, a tundra-steppe landscape dominated by Dryas, Papaver, Saliceae, and Anthemideae occupied the catchment for most of the time and began to collapse around 19 cal. ka BP following the expansion of trees and shrubs such as Larix, Betula, Alnus, and Vaccinium. Postglacial plant assemblages in the Oymyakon region exhibit a high sensitivity to summer temperature variations, with minimal impact from winter temperatures. This can be explained by the dominance of summer insolation amplitude, extreme continentality, extended plant growing season, and plant genetic adaptation to cold. Notably, our ancient DNA record show the earliest postglacial expansion of larch in eastern Siberia (around 18.6 cal. ka BP), which is likely related to the presence of local refugia. This implies that the Oymyakon region may be one of the earliest sources for larch recolonization and that more research should be implemented to provide insights into larch expansion and migration, and to better predict the future scenarios for Siberian larch forests

    Application of plant DNA metabarcoding of lake sediments for monitoring vegetation compositions on the Tibetan Plateau

    Get PDF
    Benefiting from the rapid development of environmental DNA (eDNA) technologies, sedimentary DNA (sedDNA) emerges as a promising tool for monitoring plant compositions in remote regions. The Tibetan Plateau (TP), renowned for its harsh environment and numerous ponds and lakes, presents a potentially demanding region for the application of sedDNA on vegetation investigations. Here, we used the g and h universal primers for the P6 loop region of the chloroplast trnL (UAA) intron to amplify plant DNA in surface sediments from 59 ponds and small lakes on the southwestern TP. The applicability and limitations of using plant DNA metabarcoding for modern vegetation monitoring and palaeo-vegetation reconstructions have been assessed by comparing sedDNA, pollen, and vegetation survey data. Our results showed that plant DNA metabarcoding recorded 186 terrestrial taxa, of which 30.1% can be identified at the species level. The plant sedDNA approach can effectively disclose the dominant plant taxa (including Asteraceae, Cyperaceae and Poaceae) and significant vegetation assemblages in the vicinity of the investigated sites. The number of taxa and taxonomic resolution of plant sedDNA exceeded that of pollen analysis (75 taxa detected, 5.3% can be identified at species level). Unlike pollen that retains a broad spectrum of regional plant signals (including Pinus and Artemisia), plant sedDNA mirrors very local plants, underscoring its utility in local vegetation monitoring and reconstructions. To conclude, plant DNA metabarcoding of (small) lake sediments warrant increased attention in the future for local vegetation monitoring and reconstructions on the TP

    Plant sedimentary DNA as a proxy for vegetation reconstruction in eastern and northern Asia

    Get PDF
    Plant DNA from sediments (sedDNA) are increasingly used to reconstruct the past vegetation composition, which contrasts with the few investigations on the relationship between the plant sedDNA signal and modern vegetation. Here, we applied broad-scale terrestrial plant sedDNA metabarcoding on surface sediments from 201 lakes in eastern and northern Asia to discuss the applicability as well as the limitations of using plant sedDNA metabarcoding for palaeovegetation studies. In total, 381 terrestrial plant taxa were determined with the universal plant primers of trnL g and h. Overall, plant sedDNA approach is able to retrieve major vegetation signals. The composition of plant sedDNA reflect well the vegetation types and related climate characteristics, and it also signals which are the dominant taxa in the vegetation. Our results indicate that plant sedDNA metabarcoding could be a reliable proxy of vegetation composition at a sub-continental scale and along large environmental gradients. But certain drawbacks such as limited taxonomic resolution, biases in the relative abundance of taxa, and a generally high variability of samples from similar vegetation types need to be solved before it can be widely applied to reconstruct palaeofloras

    Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: Overview and prospects

    Get PDF
    Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era

    Centennial-scale variability of the Indian Summer Monsoon during the middle to late Holocene and its links with ENSO activity

    Get PDF
    Relatively little is known about the relationship between the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO) on the centennial timescale during the Holocene. We present a well-dated high-resolution X-ray fluorescence (XRF) scanning record from a sediment core from Lake Qionghai on the southeastern Tibetan Plateau, which reveals the impact of ENSO activity on ISM variability. The results indicate a gradual drying of the regional climate on the sub-orbital timescale, which is in broad agreement with ISM changes controlled by Northern Hemisphere summer insolation. Additionally, centennial-scale drought events occurred at around 6230–5740, 4620–4250, 3820–3540, 3210–2440, 2180–1320, and 1000–615 cal yr B.P. and are consistent with enhanced ENSO activity, documenting the occurrence of ENSO-related drought events in the Holocene. Both ISM oscillations and ENSO variability show significant 350-yr, 500-yr, and 800-yr cyclicities, and there is a highly significant negative relationship between the ISM and ENSO at these cyclicities, indicating that a weak ISM was related to increased ENSO intensity, and vice versa. Our findings provide evidence for the modulation of ISM intensity by ENSO variability on the centennial timescale during the Holocene

    Description of a new troglobitic Sinocyclocheilus (Pisces, Cyprinidae) species from the upper Yangtze River Basin in Guizhou, South China

    Get PDF
    Sinocyclocheilus guiyang, a new troglobitic species from a subterranean tributary of the upper Yangtze Basin in Guiyang City, Guizhou Province, China is described in the present study. The new species is distinguishable from its congeneric species by a combination of the following characters: tip of maxillary barbel reaching to posterior edge of orbit; forehead horn absent; eye absent (or highly reduced) and tip of pectoral fins not significantly extending beyond the base of the pelvic fin. Molecular evidence, based on the mitochondrial cytochrome b (cytb) gene, further supports the validity of the species and also reveals its close relationship with S. cyphotergous, S. multipunctatus, S. punctatus and S. sanxiaensis. In addition, the new species faces a high risk of extinction, underscoring the urgency for habitat protection measures within its limited range

    Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high‐latitude and high‐elevation lakes in Siberia and China

    No full text
    Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long‐term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface‐sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface‐sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12°C and conductivity ranges between 40 and 400 ΌS cm−1. Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late‐glacial and Mid‐Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake‐hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809Second Tibetan Plateau Scientific Expedition and Research Programhttps://doi.pangaea.de/10.1594/PANGAEA.920866https://doi.org/10.5061/dryad.k6djh9w4

    Review on grid-tied modular battery energy storage systems: Configuration classifications, control advances, and performance evaluations

    No full text
    In the past decade, the implementation of battery energy storage systems (BESS) with a modular design has grown significantly, proving to be highly advantageous for large-scale grid-tied applications. However, despite its increasing prevalence, there is a noticeable absence of review papers dedicated to this specific topic. This paper aims to address this gap by presenting a comprehensive overview of modular BESS, covering various aspects such as the classification of modular electrical configurations into four types based on parallel or cascaded connections at the dc or ac side, and providing real-world examples of in-field applications. Furthermore, the paper summarizes the diverse control methods employed in modular BESSs, including power flow control, fault-tolerant control, and battery balancing control. It also presents detailed performance evaluations for different modular BESS configurations, encompassing aspects such as efficiency, cost, battery management, etc. Additionally, this review paper discusses prospective avenues for future research in the field of modular BESSs, offering valuable insights and guidance for their development and application. By providing a comprehensive analysis of modular BESS for practicing battery engineers and aspiring researchers, this paper contributes to the understanding and advancement of this technology, thereby facilitating its integration and utilization in forthcoming applications
    corecore