44 research outputs found

    Design and analysis of a novel long-distance double tendon-sheath transmission device for breast intervention robots under MRI field

    Get PDF
    Cancer represents a major threat to human health. Magnetic resonance imaging (MRI) provides superior performance to other imaging-based examination methods in the detection of tumors and offers distinct advantages in biopsy and seed implantation. However, because of the MRI environment, the material requirements for actuating devices for the medical robots used in MRI are incredibly demanding. This paper describes a novel double tendon-sheath transmission device for use in MRI applications. LeBus grooves are used in the original transmission wheels, thus enabling the system to realize long-distance and large-stroke transmission with improved accuracy. The friction model of the transmission system and the transmission characteristics model of the novel tendon-sheath structure are then established. To address the problem that tension sensors cannot be installed in large-stroke transmission systems, a three-point force measurement method is used to measure and set an appropriate preload in the novel tendon-sheath transmission system. Additionally, experiments are conducted to verify the accuracy of the theoretical model and multiple groups of tests are performed to explore the transmission characteristics. Finally, the novel tendon-sheath transmission system is compensated to improve its accuracy and the experimental results acquired after compensation show that the system satisfies the design requirements

    Planimetría de alta resolución del dolmen de Menga (Antequera, Málaga) mediante escaneado láser terrestre, levantamiento 3D y fotogrametría

    Get PDF
    Dielectric metasurfaces can achieve flexible beam manipulations. Herein, we study dielectric metasurfaces with different refractive indices, periods, incident angles, and cross-sectional shapes to determine the metasurface working mechanisms. Perfect transmission mainly depends on multipolar interference that can be used to control the transmission modes through the hybrid periods, hybrid cross sections, and multilayers. Perfect reflection is strongly influenced by the period of the metasurface and occurs only when the period is shorter than incident wavelength, which can be attributed to the lattice coupling. Furthermore, lattice coupling can be classified into two types with distinct properties: vertical mode and horizontal mode coupling. The vertical mode appears when the effective wavelength matches the feature size, whereas the horizontal mode only appears when the incident wavelength is close to the period. The horizontal mode is sensitive to the incident angle. The revealed functioning mechanisms enable further practical applications of metasurfaces

    Beam Manipulation Mechanisms of Dielectric Metasurfaces

    Get PDF
    Dielectric metasurfaces can achieve flexible beam manipulations. Herein, we study dielectric metasurfaces with different refractive indices, periods, incident angles, and cross-sectional shapes to determine the metasurface working mechanisms. Perfect transmission mainly depends on multipolar interference that can be used to control the transmission modes through the hybrid periods, hybrid cross sections, and multilayers. Perfect reflection is strongly influenced by the period of the metasurface and occurs only when the period is shorter than incident wavelength, which can be attributed to the lattice coupling. Furthermore, lattice coupling can be classified into two types with distinct properties: vertical mode and horizontal mode coupling. The vertical mode appears when the effective wavelength matches the feature size, whereas the horizontal mode only appears when the incident wavelength is close to the period. The horizontal mode is sensitive to the incident angle. The revealed functioning mechanisms enable further practical applications of metasurfaces

    Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia

    Get PDF
    BACKGROUND: Panax Notoginseng Saponins (PNS) is the major class of active constituents of notoginseng, a natural product extensively used as a therapeutic agent in China. Tumor when accompanied by cardiovascular disorders poses a greater challenge for clinical management given the paradoxical involvement of angiogenesis, therefore gaining increased research attention. This study aim to investigate effects of PNS and its activity components in the mouse model of tumor complicated with myocardial ischemia. METHODS: Tumor complexed with myocardial ischemia mouse model was first established, which was followed by histological and immunohistochemistry examination to assess the effect of indicated treatments on tumor, myocardial ischemia and tissue specific angiogenesis. MicroRNA (miRNA) profiling was further carried out to identify potential miRNA regulators that might mechanistically underline the therapeutic effects of PNS in this complex model. RESULTS: PNS and its major activity components Rg1, Rb1 and R1 suppressed tumor growth and simultaneously attenuated myocardial ischemia. PNS treatment led to decreased expression of CD34 and vWF in tumor and increased expression of these vascular markers in heart. PNS treatment resulted in reduced expression of miR-18a in tumor and upregulated expression of miR-18a in heart. CONCLUSIONS: Our data demonstrated for the first time that PNS exerts tissue specific regulatory effects on angiogenesis in part through modulating the expression of miR-18a, which could be responsible for its bidirectional effect on complex disease conditions where paradoxical angiogenesis is implicated. Therefore, our study provides experimental evidence warranting evaluation of PNS and related bioactive component as a rational therapy for complex disease conditions including co-manifestation of cancer and ischemic cardiovascular disease

    Terminalia Chebulanin Attenuates Psoriatic Skin Lesion via Regulation of Heme Oxygenase-1

    No full text
    Background/Aims: Psoriasis is one of the most common inflammatory skin disorders, affecting 3% of the general population. Terminalia chebulanin (TC) is a polyphenolic compound that possesses antioxidant and anti-inflammatory activities. The current study was designed to investigate the effect of TC on psoriatic lesions. Methods: We examined the protective effect of TC against psoriatic lesions in mice and keratinocyte proliferation in HaCaT cells. Results: We found that TC exhibited potent anti-psoriatic activities, as evidenced by improvement of erythema and scaling scores, decrease of epidermal, ear and skinfold thickening, decrease of tumor necrosis factor α (TNFα), interleukin (IL)-17A, IL-23 and matrix metalloproteinase (MMP)-9 expression, and decrease of TBARS content and increase of GSH content in IMQ-treated mice, and decrease of keratinocyte proliferation, TNFα, IL-17A and IL-23 expression, and ROS level in M5-treated cells. All those effects induced by TC were inhibited by zinc protoporphyrin IX (ZnPP), an inhibitor of heme oxygenase (HO)-1, indicating that HO-1 was responsible the anti-psoriatic effect of TC. Moreover, TC inhibited the upregulation of p65 NF-κB under in vitro psoriatic condition. ZnPP suppressed TC-induced inhibition of p65 NF-κB expression. Overexpression of p65 NF-κB significantly suppressed TC-induced decrease of TNFα, IL-17A and IL-23 expression and keratinocyte proliferation, indicating that HO-1-mediated downregulation of NF-κB was involved in the anti-psoriatic effect of TC. Conclusions: The data demonstrate that TC may serve as a potential therapeutic option for psoriatic patients

    Throughput Improvement in Femtosecond Laser Ablation of Nickel by Double Pulses

    No full text
    In this study, femtosecond laser double pulses were tested to improve their nickel ablation efficiency. The experimental results indicated that compared with single pulses, double pulses with different delay times generated craters with larger diameters and depths. The results obtained for three sets of double pulses with different energy ratios indicated that double pulses with an energy ratio of 1:9 had the highest ablation efficiency, followed by those with energy ratios of 2:8 and 5:5. The double pulses with the aforementioned three energy ratios achieved the maximum ablation efficiency when the delay time was 3–4 ps. Compared with single pulses, double pulses with an energy ratio of 1:9 generated craters with an up to 34% greater depth and up to 14% larger diameter. In addition, an interference effect was observed with a double pulse delay time of 0 ps, which has seldom been reported in the literature. The double pulses were simulated using the two-temperature model. The simulation results indicated that double pulses with an energy ratio of 1:9 with a delay time of 4 ps can perform the strongest ablation. These simulation results are in line with the experimental results

    Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide

    No full text
    [Image: see text] This work describes polyimide (PI) ultrafine fibrous membranes (UFMs) with aligned fibrous structures, fabricated via the high-speed electrospinning procedure. Organo-soluble intrinsically photosensitive PI is utilized as the fiber-forming agent. The effects of different rotating speeds on the fiber morphology and properties are studied. The aligned UFMs possess hydrophobicity, favorable optical properties, and improved deformation durability. The extension strength of the UFMs reinforces obviously with the increased rotating speed and reaches the maximum of 9.18 MPa at 2500 rpm. In addition, due to the photo-cross-link nature of the PI resin, the UFMs present lithography capability, which can obtain micro-sized patterns on aluminum substrates, and even part of the fibrous structure was retained after development. This work shows promise in manufacturing fiber-based photolithographic hierarchical structures on flexible substrates, which exhibit potential in achieving multiple functions on fiber-based electronic devices

    Effects of explosion puffing on the nutritional composition and digestibility of grains

    No full text
    The objective of this study was to investigate the effects of explosion puffing on the nutritional composition, physical properties, and digestibility of grains including millet, barley, black rice, rice, glutinous rice, and wheat. Explosion puffing of grains resulted in the nutritional composition with higher total sugar content and lower moisture, starch and fat contents. Although the protein content scarcely changed comparing with the untreated grains, the solubility declined significantly. Moreover, explosion puffing could significantly improve the physical properties including the water absorption index, water solubility index and gelatinization degree. The in vitro digestion experiment was employed to investigate the influences of explosion puffing on the starch hydrolysis rate and free amino acid content, and it was indicated that the digestibility of the starch and protein in grains was highly improved. The results demonstrated that explosion puffing is a suitable technique to improve the physical properties and digestibility of grains, which provided the theoretic foundation for the use of explosion puffing technology in coarse cereal processing

    Modeling the Traffic Flow of the Urban Signalized Intersection with a Straddling Work Zone

    No full text
    Work zones widely exist on urban roads in many countries and have a significant negative impact on traffic. Few studies have focused on modeling the traffic flow of the work zone on the urban arterials, especially on the work zone at the intersections. In this paper, a microscopic model based on the social force theory for the traffic flow of the intersection with a specific work zone, called straddling work zone, is proposed. The model can capture the no lane division and irregular boundary characteristics of the traffic of the intersection with a straddling work zone and also can reflect the interaction of the intersection traffic flows from the two opposite directions. The proposed model is calibrated and validated using the real work zone data, and the results display that the MARE values are all less than 10%. The factors affecting the traffic flow in the straddling work zone are analyzed through simulation. Our study reveals that the distance from the lower edge of the work zone to the median divider of the road and the proportion of large vehicles in the work zone have the greatest impact on the signalized intersection, which provides a reference for the future traffic control at the intersection with the straddling work zone
    corecore