1,010 research outputs found

    MECHANICAL RESPONSE ANALYSIS AND TREATMENT MEASURES OF PARTITION WALL OF METRO STATION

    Get PDF
    In the process of metro station construction, the partition wall is usually used to prevent the displacement of the soil behind the wall to ensure the construction platform. This research aims to analyze the response of partition wall to keep the safety of the structure. The time-horizontal displacement and cracks of the partition wall are measured during the process of metro station construction. The finite element software FLAC 3D is used to simulate the response of partition wall, and the reasons of partition wall cracking and displacement are analyzed by finite element simulation and measurement data. The stiffness and self-stability of the partition wall in the station is powerful, the stress concentration appeared on the central area and caused cracks of the partition wall. Reducing the pressure exerted on the partition wall and shifting partial pressure exerted on the partition wall by the construction of the medium plate can solve the tress concentration problem. Through the data analysis of the strengthened partition wall, the reinforcement effect is good, ensuring the safety of the subsequent construction. The causes of partition wall cracking are found during process of metro station construction, and the solution proposed in this paper is effective. Engineers can refer to this paper to analyze the response of partition wall in the construction of similar structures, which can ensure construction safety and reduce construction cost

    Controlling of the surface energy of the gate dielectric in organic field-effect transistors by polymer blend

    Get PDF
    In this letter, we demonstrate that by blending insulating polymers, one can fabricate an insulating layer with controllable surface energy for organic field-effect transistors. As a model system, we used copper phthalocyanine evaporated on layers of polymethyl metacrylate blended with polystyrene with different blending ratios and measured the field-effect mobility in transistors. We show that the highest field-effect mobility is achieved for identical surface energies of the dielectric and the semiconductor. This simple technique demonstrates the viability of using the blends of insulating polymers to systematically control the surface energy of the gate dielectric toward achieving better performances

    3-(7-Meth­oxy-β-carbolin-1-yl)propionic acid monohydrate

    Get PDF
    In the title compound, C15H14N2O3·H2O [systematic name: 3-(7-meth­oxy-9H-pyrido[3,4-b]indol-1-yl)propanoic acid monohydrate], the fused rings make dhedral angles of 0.4 (1), 1.1 (2) and 1.4 (2)°. In the crystal, the water mol­ecule is involved in the formation of three independent hydrogen-bonded chains via O—H⋯O and N—H⋯O hydrogen bonds, while the carb­oxy group forms an inter­molecular O—H⋯N hydrogen bond

    Detection of Myocardial Infarction using ECG and Multi-Scale Feature Concatenate

    Get PDF
    Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However; issues; particularly overfitting and underfitting; were not being taken into account. In other words; it is unclear whether the network structure is too simple or complex. Toward this end; the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally; multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result; the N-Net reached a 95.76% accuracy in the MI detection task; whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p \u3c 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion; testing throughout the simple and complex network structure is indispensable. However; the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed

    Developments of a 2D Position Sensitive Neutron Detector

    Full text link
    Chinese Spallation Neutron Source (CSNS), one project of the 12th five-year-plan scheme of China, is under construction in Guangdong province. Three neutron spectrometers will be installed at the first phase of the project, where two-dimensional position sensitive thermal neutron detectors are required. Before the construction of the neutron detector, a prototype of two-dimensional 200 mmx200 mm Multi-wire Proportional Chamber (MWPC) with the flowing gas of Ar/CO2 (90/10) has been constructed and tested with the 55Fe X-Ray using part of the electronics in 2009, which showed a good performance. Following the test in 2009, the neutron detector has been constructed with the complete electronics and filled with the 6atm.3He + 2.5atm.C3H8 gas mixture in 2010. The neutron detector has been primarily tested with an Am/Be source. In this paper, some new developments of the neutron detector including the design of the high pressure chamber, the optimization of the gas purifying system and the gas filling process will be reported. The results and discussion are also presented in this paper.Comment: 5 page

    Evolutional selection of a combinatorial phage library displaying randomly-rearranged various single domains of immunoglobulin (Ig)-binding proteins (IBPs) with four kinds of Ig molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein A, protein G and protein L are three well-defined immunoglobulin (Ig)-binding proteins (IBPs), which show affinity for specific sites on Ig of mammalian hosts. Although the precise functions of these molecules are not fully understood, it is thought that they play an important role in pathogenicity of bacteria. The single domains of protein A, protein G and protein L were all demonstrated to have function to bind to Ig. Whether combinations of Ig-binding domains of various IBPs could exhibit useful novel binding is interesting.</p> <p>Results</p> <p>We used a combinatorial phage library which displayed randomly-rearranged various-peptide-linked molecules of D and A domains of protein A, designated PA(D) and PA(A) respectively, B2 domain of protein G (PG) and B3 domain of protein L (PL) for affinity selection with human IgG (hIgG), human IgM (hIgM), human IgA (hIgA) and recombinant hIgG1-Fc as bait respectively. Two kinds of novel combinatorial molecules with characteristic structure of PA(A)-PG and PA(A)-PL were obtained in hIgG (hIgG1-Fc) and hIgM (hIgA) post-selection populations respectively. In addition, the linking peptides among all PA(A)-PG and PA(A)-PL structures was strongly selected, and showed interestingly divergent and convergent distribution. The phage binding assays and competitive inhibition experiments demonstrated that PA(A)-PG and PA(A)-PL combinations possess comparable binding advantages with hIgG/hIgG1-Fc and hIgM/hIgA respectively.</p> <p>Conclusion</p> <p>In this work, a combinatorial phage library displaying Ig-binding domains of protein A, protein G, or protein L joined by various random linking peptides was used to conducted evolutional selection <it>in vitro</it> with four kinds of Ig molecules. Two kinds of novel combinations of Ig-binding domains, PA(A)-PG and PA(A)-PL, were obtained, and demonstrate the novel Ig binding properties.</p
    corecore