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Abstract: Diverse computer-aided diagnosis systems based on convolutional neural networks were
applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for
early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not
being taken into account. In other words, it is unclear whether the network structure is too simple
or complex. Toward this end, the proposed models were developed by starting with the simplest
structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional
layers were included in each lead branch. Additionally, multi-scale features-concatenate networks
(MSN-Net) were also implemented where larger features were being extracted through pooling the
signals. The best structure was obtained via tuning both the number of filters in the convolutional
layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in
the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task.
Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by
the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable
to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and
complex network structure is indispensable. However, the way of dealing with the class imbalance
problem and the quality of the extracted features are yet to be discussed.

Keywords: accuracy; convolution neural network (CNN); classifiers; electrocardiography; k-fold
validation; myocardial infarction; sensitivity

1. Introduction

Myocardial infarction (MI), defined in pathology as myocardial cell death due to
prolonged ischemia, is a serious heart disease that can cause death and disability [1].
According to the American Heart Association, it is estimated that 750,000 Americans
have a heart attack every year, with approximately 116,000 deaths [2]. Therefore, early
diagnosis and detection are the utmost important task. Nowadays, several methods already
exist to recognize MI, including electrocardiogram (ECG), biomarkers, imaging technique,
or defined by pathology. Yet, the non-invasive ECG is the most economical and widely
used one for the sake of immediate treatment strategies among them [3–7]. Performing
ECG analysis manually may not merely be time-consuming but leads to inter-observer
variability [8,9]. Consequently, a computer-aided diagnosis system may come in handy to
solve these difficulties. Moreover, wearable devices are common technology in recent days
and are rising in numbers. Wang et al. [10] provided a wearable ECG monitoring system
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with the benefits of low power and high data transmitted function. Wang used a micro
control unit (MCU) to realize the adjustable radio frequency (RF) and power reduction
that optimized the ECG system. Another novel technical design is the antenna for wireless
devices. Chiang et al. [11] proposed a multiband and power efficiency antenna for a USB
dongle application.

MI can be detected by the abnormalities waveform features of the ECG, including ST
displacement, T wave inversion, silent Q wave, and so on [1,12]. Hence, it is effective to
make use of machine learning algorithms to achieve an automated MI diagnosis [13–15]. In
the past few years, deep learning (DL) methods, including convolutional neural networks
(CNN), recurrent neural networks, restricted Boltzmann machines [16], autoencoder, and
generative adversarial networks are proposed [17–20]. These network architectures or
learning methods are used for ECG classification, denoising, reconstruction, annotation,
data compression, data generation, and data synthesis purposes. Among all DL methods
described above, CNN is the most commonly used method for MI detecting and locat-
ing [21]. Acharya et al. [22] proposed a CNN model for MI detection on noisy lead II ECG
and reached an accuracy of 93.53%. Alghamdi et al. [23], on the other hand, treated the lead
II ECG as a 2D image and employed the transfer learning method by utilizing a pre-trained
visual geometry group network (VGG-Net) [24] as a feature extractor incorporating an
additional trainable classifier where the yielded accuracy after model retraining was as
high as 99.22%. However, the above methods only make use of single-lead ECG informa-
tion. To this end, Baloglu et al. [25] implemented a simple approach where a single CNN
model was trained using all lead signals, resulting in a model that is capable of detecting
and locating MI regardless of the input lead. Another way is to regard 12-lead ECG as a
12-by-signal-length image and perform the convolution along the signal direction but not
lead direction [26]. A limitation of this is that the features in each lead will be extracted by
the same filters. To extract features in each lead independently, Lodhi et al. [27] trained a
CNN model for each lead. The 12 models were then used for a voting mechanism to yield a
unified prediction of MI appearance, yet such a high number of CNNs will not be practical
for portable devices. To improve on this drawback, Reasat et al. [28] proposed a high-level
architecture CNN model named shallow-CNN, where each lead was passed through an In-
ception module [29] to execute feature extraction. The features were then concatenated and
performed classification. This way, each lead of features can be extracted independently
while giving a single prediction. As those leads are more relevant to inferior MI (IMI), II, III
and augmented vector foot (aVF) were utilized to output the prediction between healthy
control (HC) and IMI. Liu et al. [30] came up with the same approach, but with a total of six
diagnosis classes and using all 12-lead ECG compared to previously mentioned work. The
classes include the anterolateral (ALMI), anterior (AMI), anteroseptal (ASMI), inferolateral
(ILMI), IMI, and HC, and they called the proposed model MFB-CNN. Han et al. [31] also
implemented a similar approach and experiment but with some structural improvements
in their ML-ResNet, which includes the residual network (ResNet) to improve the gradient
vanishing problem [32] and the batch normalization (BN) to reduce the internal covariant
shift [33]. Last but not the least, Hao et al. [34] worked on a similar approach as well
but using DenseNet [35], a novel network architecture. Although both ResNet [36] and
DenseNet [37] are famous for their skip connection approach, the latter achieved better
performance via feature concatenate, whereas the former adopted feature addition.

Among all aforementioned state-of-the-art methods, different issues appear in differ-
ent studies. In [22–24], only single lead information was utilized, which is not sufficient
if the multiple MI location predictions are applied. In [25,26], every lead was used to-
gether as an input into CNN while training, but the features should be extracted separately.
In [27], 12 models were trained, one for each lead and the final prediction was considered
using a voting mechanism. However, the fact is that the multi-lead features-concatenate
technique used to accomplish extracting inter-lead ECG features independently can be
utilized while getting a unified prediction [28–32,34]. While there are plenty of studies that
achieve remarkable accuracy [22–26,34], none mentioned and considered intra-individual
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variability (AIV) nor inter-individual variability (RIV) in ECG [38]. AIV is defined as the
variability between ECGs from the same individual or variability within one ECG, while
RIV is the variability between ECGs from different individuals. Though not explicitly
mentioned in [22–26,34], their experimental scheme can be referred to as a beat-to-beat AIV
cross-validation (bAIV-CV) scheme. In [28–31], the RIV problem was taken into account
through implementing RIV cross-validation (RIV-CV), which regards the data from the
same individual as a whole to prevent ECGs from appearing in the different folds at the
same time. bAIV-CV, on the other hand, simply randomly crop segments from an ECG to
form different folds. Even though there may be bAIV contained in the ECG from various
sources [38], most of the aforementioned studies have already shown that it is insignificant
in the Physikalisch-Technische Bundesanstalt (PTB) database. Simonson et al. [39] showed
that AIV is smaller than RIV in ECG. Another potential problem is the so-called class
imbalance problem [40], which refers to the data in a class outnumbered the other class.
Such scenarios may induce the models to classify samples as belonging to the majority
class simply. It can be observed that, while validating MI detection performance, studies
that were previously considered and mentioned earlier tend to allow the number of data
in the class MI to be significantly larger than in HC. Finally, in [28–31], features in every
lead were utilized independently, but the performance, especially in MI locating, has
room for improvement. In machine learning, overfitting is a production of an analysis that
corresponds to how close or how exact something is to a particular set of data and may,
therefore, fail to fit the held-out data or predict future observations reliably. Overfitting
is caused by exceeding some optimal network size, whereas overtraining refers to the
excessive time for network training. Both may finally result in losing the predictive ability
of the model [41]. Most of the aforementioned literature prevent overtraining by using
an early stopping mechanism, which stops the training by monitoring the accuracy or
loss. However, none of them take the overfitting problem into account in the process of
designing and validating a model. To verify the occurrence of overfitting in the model
development phase, one should start from the simplest architecture then gradually increase
the complexity when observing the validated result [42]. A. Kumar et al. [43] used a novel
fuzzy cross-entropy loss together with transfer learning to increase the accuracy of the
model. The work from M. Piekarski et al. [44] mainly focused on the implementation of
transfer learning by utilizing various pre-trained networks where the VGG16 outperformed
among all models considered in the study. Toward this end, a network should be simple
and adjustable where the sequence of double-convolution-follow-by-pooling structure
observed in VGG13 [24], together with multiscale features concatenate structure, was
inspired by [45,46]. A multi-lead features-concatenate and multiscale features-concatenate
integrating structure were developed, which is much like a transposed version of the
VGG13 structure. Signals will first be pooled then passed to the convolutional layers to
extract features that exist in different scales. The number of inputting scales and the number
of filters remain adjustable to find the best architecture and justify overfitting.

As technology advances, utilization of smaller computers together with faster internet
speeds for smart devices makes the improvement in portable devices and the Internet of
Things nowadays an advanced research area. These open a new and wide range of solutions
in e-health, surveillance, and monitoring for medical purposes. However, portable devices
are prone to having a lower level of computational capability as well as having a battery
consumption problems. This research aims to demonstrate the solutions to address the
research challenges in the development of MI detection models using the CNN algorithm to
apply feature extraction, classification, and further detection for portable devices. Figure 1
is the schematic diagram of healthcare application related to the research, 12-lead ECG
signals, or other physiological signal values captured by portable devices sent to a smart
device. It can either choose offline monitoring or cloud computing if the internet is available.
Physicians can investigate or diagnose and undertake further actions, such as calling
ambulance control or ward management. In other words, the proposed models are kept
in both smart devices and cloud servers. Once an abnormality on the ECG waveform is
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identified by the model, the ECG will be sent to the physician in the hospital for further
investigation. A smaller yet more accurate model allows the whole system to be more
sustainable and makes it possible to fit inside a smart device for offline monitoring. Since
bAIV about the MI and HC is negligible in the PTB database and assessing the RIV-CV
has more clinical significance, only RIV-CV will be implemented. Moreover, considering
it may lead to model performance reduction, the class imbalance problem should be
considered. The main contributions in this research are as follows: First, by carefully verify
the occurrence of underfitting and overfitting, the proposed N-Net for MI detection task
outperformed the previous works considered in this study. Second, the proposed MSN-Net
outperformed both the N-Net and the previous works, which indicates that multiscale
features can improve the performance of the model. Third, networks were trained with a
different number of input signal scales and a different number of filters in the convolutional
layer. The ones that achieved the best accuracy in MI detecting and MI locating were then
compared with several state-of-the-art techniques. The comparison was conducted using
several parameters, including the nonparametric Mann–Whitney U test, to determine the
difference of performances between the previous works.
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Figure 1. The schematic diagram of healthcare application with integration of Internet of Things (IoT) technology. 12-lead
electrocardiogram (ECG) information can combine with other physiological signal values from different wearable devices,
such as blood glucose, body temperature, and blood pressure, for algorithm models. Physicians can investigate or diagnosis
and undertake further action, such as calling an ambulance or ward, through offline monitoring and/or cloud computing.

2. Materials and Methods

In this section, the experimental dataset and the signal preprocessing methods are
first introduced, including signal denoising and data rearrangement. Next, the network
architecture is presented and illustrated. Finally, verifying the performance of the models
proposed in this research is discussed. Figure 2 demonstrates the block diagram of the
research. The final objective is to build models that are capable of detecting and/or locating
the occurrence of MI by analyzing the 12-lead ECG. First of all, the PTB 12-lead ECG
databases were gathered, and signals were then denoised and segmented. When forming
folders for 5-fold cross-validation, it was necessary to prevent patients’ data from appearing
in the different folders at the same time. Next, networks with a different number of
inputting signal scales and a different number of filters in the convolutional layer were
trained. The ones that achieved the best accuracy in MI detection and/or locating were
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then compared with several state-of-the-art networks. The comparison was conducted
using several clinical indexes, including accuracy (ACC), sensitivity (SEN), specificity
(SPE), and F1-score (F1), and area under curve (AUC), together with the nonparametric
Mann–Whitney U test to determine whether the difference in performances between the
previous works and the proposed networks are significant. The training was conducted
on several computers with different hardware configurations. Yet, only the version of
TensorFlow affected the network performance. In this study, the TensorFlow 2.0.0 GPU
version was chosen.
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gathering, signal preprocessing, data rearrangement, study model networks training, and performance, compared with
other studies. The final objective was to build models capable of detecting and/or locating the occurrence of MI by analyzing
the 12-lead ECG.

Figure 3 is the block diagram of the method used in this research. During the signal
preprocessing phase, the signal was down sampled to 100 Hz to reduce the computational
cost of the subsequent steps. Next, segmentation using R-peak detection was conducted to
shorten the length of the signals, thus simplifying the input layer of the neural network. Af-
terward, in the dataset rearrangement phase, under sampling was preferred to preliminary
tackle the class imbalance issue since there was enough data for all classes. One of the main
aims of the proposed research was to compare MI detection and locating performance of the
model with previous works. With that, the MI locating dataset was created, and part of it
was used to form the MI detection dataset. The k-fold CV was used to provide a measure of
how accurately the model could predict across the whole dataset. To fulfill the inter-patient
experimental scheme, it was necessary to prevent the patients’ data from appearing in
the different folds at the same time. Finally, in the model development phase, instead of
testing the performance of one or more fixed network architecture, testing started from a
simple network structure and gradually increased the complexity to find the maximum
performance between underfitting and overfitting. The adjustable parameters included
the number of inputting signal scales and the number of filters in the convolutional layers.
The configuration that achieved the best ACC evaluated by k-fold CV was chosen and was
compared with several state-of-the-art techniques by some clinical indexes, including ACC,
SEN, SPE, F1, and AUC. The proposed networks showed promising results that achieved
both higher average performance and significant differences evaluated by the U test.
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2.1. ECG Dataset

To evaluate the performance of the proposed model, the open-access PTB ECG
database [47] collected from PhysioNet [48] was used. The PTB ECG database comprises
52 healthy controls (HC) and 148 MI patients. Since patients may have more than one
record, a total of 80 HC records and 368 MI records were found. Each record contains a
standard 12-lead ECG together with 3 Frank lead ECGs under 1000 Hz sampling rate and
16-bit resolution ranging from −16,384 µV to 16,384 µV. Figure 4 shows the snapshot of the
12-lead HC and IMI ECG. According to the information provided by the header file in the
database, MI records can be further divided by occurred MI locating. Five MI locations
were utilized in this study, namely 43 ALMI, 47 AMI, 77 ASMI, 56 ILMI, 89 IMI.
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silent Q wave, and so on.
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2.2. Signal Preprocessing

Since the ECG maximum frequency band is about 40 Hz [49], applying an anti-aliasing
filter and down sampling to 100 Hz can eliminate high-frequency noise and reduce the
computational cost on the later steps of the experiment while still taking the Nyquist
theorem into consideration. A median filter with a 0.857-s window was then employed to
find and remove baseline wander. The window size was calculated based on the objective
of completely covering one cardiac cycle (PQRST waves) under a 70 beats per minute
assumption. Denoised signals were then segmented into pieces using the R-peak detection
algorithm proposed by Christov [50], while serving as a data augmentation method where
every piece of data contained 50 points before the R-peak and 349 points after the R-
peak. Lastly, to prevent the model from tending to predict classes that have more training
data [40], the quantity of data in each class was required to be equal. This was achieved
through random under sampling, a data level solution for imbalanced data [51]. Thirty
(30) data pieces were chosen from every 40 chosen records in all 6 diagnostic classes,
resulting in a total of 7200 data pieces in the MI locating dataset. Cross-validation (CV) was
implemented after model training. A similar method to a CV is called leave-one-out, while
the standard method is the leave-one-patient-out CV [52]. However, it was impractical
to execute CV on a per subject basis since given a total of 96 chosen patients, 96-fold
CV has to be performed. Thence, a subject-based k-fold CV was more suitable for the
current investigation. A subject-based 5-fold CV was performed to evaluate the model
performance, in which every fold contained multiple patient records. In the meantime, it
was necessary to prevent a patient record from appearing in other folds. As for the MI
detection dataset, 6 out of 30 were selected from each segmented data in all five MIs to
fulfill class balancing. Table 1 summarizes the dataset after the rearrangement.

Table 1. Patient and data distribution after rearrangement.

Class No. of Subjects No. of Records No. of Pieces
(Detection)

No. of Pieces
(Locating)

HC 25 40 1200 1200
ALMI 14 40 240 1200
AMI 14 40 240 1200

ASMI 13 40 240 1200
ILMI 16 40 240 1200
IMI 14 40 240 1200

2.3. Network Architecture

First of all, the network took 12-lead ECG at the input layer, as shown in Figure 5.
Each lead was fed into a lead branch CNN to extract features independently. In the lead
branch CNN, the input was passed through several parallel paths, as illustrated in Figure 6.
In each parallel path, the input was sequentially passed through two convolutional layers
marked in blue in Figure 6 for features extraction and a global average pooling (GAP)
layer for overfitting prevention. To extract larger features, pooling the signal can let the
features become smaller, which allows the filters with the same kernel size to extract it.
This is in contrast to having a larger kernel size, which has a higher computational cost.
Furthermore, instead of using common maximum pooling or average pooling, convolution
with both kernel size (K) and stride (S) with the same value was introduced to accomplish
the down sampling operation [53], which is considered a learnable pooling layer. Hence a
specialized convolutional layer marked in purple in Figure 6 was used to pool the signal
for larger features extraction. The extracted features were then concatenated and linked to
a fully connected (FC) layer for classification. This FC layer was the only non-convolutional
layer in the proposed model. It used the SoftMax activation function, which is the most
commonly used activation function in the output layer of a model for classification tasks.
To be more specific, 2 neurons for MI detection and 6 neurons for MI locating at the output
FC layer were used. The parameter F represents the number of filters on a scale branch.
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Since non-zero paddings were executed, the convolutional layers colored in blue in Figure 6
reduced the length of the passing signals by 2 since K was 3. All the convolutional layers
used the rectified linear unit [54] as the activation function. Preventing overfitting is the
utmost important task. Therefore, a dropout layer [55] was inserted with a rate of 0.5
right before FC. Finally, the number of filters and the number of scales were reserved as
variables for tuning the best structure. Models using single-scale features were named
narrow net (N-Net), while models using multi-scale features were named multi-scale
narrow net (MSN-Net).
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2.4. Model Training

The models described in Section 2.3 were trained with categorical cross-entropy loss,
a common loss function for the multi-class classification task, and Adam optimizer [56]
with a 0.001 learning rate. The model parameters updated after every 300 data were
inputted. Training stops if it did not get any improvement for 20 continuous epochs or
when a maximum of 200 epochs was reached. The accuracy and loss at each epoch were
recorded. Additionally, how the number of filters and scales affect the model performance
was explored. Performances of models with filter numbers from 1 to 10 and scale numbers
from 1 to 5 were recorded. Since the robustness of MI locating models using single-scale
features were too weak, the performances with filter number up to 15 were recorded. This
resulted in a total of 50 different models for MI detection and 55 for MI locating. Since
different starting conditions of model parameters led to different final accuracy, a total
of 15 times subject-based 5-fold CV were executed for each model. In other words, one
model would have 15 sets of CV results. The models were trained in a fixed order of data
input to reduce the inter-model accuracy deviation. To compare the results with the current
state-of-the-art models proposed by [24,26,27] were retrained since BN was removed and,
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more importantly, the dataset was different. All the networks were implemented using
Keras [57], a neural network library.

2.5. Performance Metrics

Predictions given by subject-based 5-fold CV were gathered to form 15 sets of con-
fusion matrixes for both detection and locating models proposed by [28,30,31] as well as
this study. The performances of the models were then evaluated in terms of several clinical
indexes, including accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1-score (F1)
with their corresponding equation for computation as shown in Equations (1)–(4), respec-
tively. Only ACC was evaluated for MI locating models. All above criteria were calculated
based on true positive (TP) rate, true negative (TN) rate, false positive (FP) rate, and false
negative (FN) rate.

ACC% =
TP + TN

TP + TN + FP + FN
× 100 (1)

SEN% =
TP

TP + FN
× 100 (2)

SPE% =
TN

TN + FP
× 100 (3)

F1% =
2 × TP

2 × TP + FP + FN
× 100 (4)

In addition to the aforementioned indexes, the receiver operating characteristic (ROC)
curve [58] and area under the ROC curve (AUC) of MI detection models were also calcu-
lated. As described in Section 2.4, the subject-based 5-fold CV 15 times was performed to
evaluate the overall model performances. To verify whether a model had better perfor-
mance than the other, aside from observing the box plot for comparing the distribution,
statistical analysis was also included to determine whether there were significant differ-
ences between the performance of the models. Instead of using a t-test, the nonparametric
Mann–Whitney U test [59], also known as the Wilcoxon rank–sum test, was utilized since
it is more suitable for small population data. Finally, the AUC and U test were calculated
using SPSS, a common statistical analysis tool.

3. Results

The data preprocessing and rearrangement were executed. The studies in [28,30,31]
and the proposed networks in this study were implemented. Subject-based 5-fold and
10-fold CV was performed 15 times for each model in a 2-class detective dataset. Subject-
based 5-fold was performed 15 times for each model in a 6-class detective dataset. Before
picking the models that achieved the best average accuracy in MI detection or MI locating
and compared them with the state-of-the-art, the training and validation accuracies, as well
as the loss, were plotted to observe the training effectiveness. Afterward, the comparison
was done by determining the significant difference in accuracy using the U test. The
significant differences in SEN, SPE, F1, and AUC carried out by MI detection models were
also calculated and compared.

3.1. Accuracy of N-Net and MSN-Net for MI Detection in 2-Class Dataset

Figure 7 shows the ACC trend of the proposed MI detection models with varying filter
numbers and scale numbers. It can be observed that at low filter numbers, as the number
of filters increased, the ACC increased significantly and gradually converges at about 95%
for larger filter numbers. In addition, when using a low filter number, the ACC increased
as the number of the inputted signal scale increased. But the increase was not as much
as the filter number increase. By observing all the graphs, it can be seen that no matter
how complex the network is, the ACC converged to about 95% with a small deviation. In
using single-scale features, the best average ACC% of 95.76% was achieved with nine filters
by 5-fold validation, and 94.30% was achieved with four filters by 10-fold validation. In
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using two-scale features, the best average ACC% of 95.60% was achieved with 10 filters by
5-fold validation, and 94.03% was achieved with six filters by 10-fold validation. In using
three-scale features, the best average ACC% of 95.33% was achieved with six filters by
5-fold validation, and 96.29% was achieved with four filters by 10-fold validation. In using
four-scale features, the best average ACC% of 95.27% was achieved with five filters by
5-fold validation, and 93.80% was achieved with five filters by 10-fold validation. In using
five-scale features, the best average ACC% of 94.95% was achieved with nine filters by
5-fold validation, and 93.40% was achieved with seven filters by 10-fold validation. Models
that were double confirmed by 5-fold or 10-fold validation demonstrated a similar trend
of results. To reduce the number of computer calculations, subsequent verifications were
conducted by 5-fold validation. To summarize, using the single-scale features together
with nine filters yielded the best result among all models that are for the MI detection task.
As the number of used scale features increased, the best average ACC gradually decreased.
This may be caused by overfitting due to the excessive model strength, which is proven
in Section 3.3.
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3.2. Accuracy of N-Net and MSN-Net for MI Locating in 6-Class Dataset

Figure 8 shows the ACC trend of the proposed MI locating models with different filter
numbers and scale numbers. Similar to MI detection results, it can be observed that at
low filter numbers, as the number of filters increased, the ACC increased significantly and
gradually converge at about 60% when using larger filter numbers. Furthermore, when
using a low filter number, the ACC increased as the number of the inputted signal scale
increased. The increase was not as much as the increase in the filter number. By observing
all the graphs in Figure 8, it can be seen that no matter how complex the network was, the
ACC converged at about 60% with a slightly small deviation. Models that used single-scale
features incorporating 15 filters achieved the best average ACC at about 60.49%. Two scales
with 10 filters had an ACC of 61.19%, while three scales with 10 filters had an ACC of
61.52%. As for the four scales with nine filters, and five scales with 10 filters, an ACC of
61.82% and 60.87% were achieved, respectively. To summarize, using the four-scale features
together with nine filters yielded the best result among all models for the MI locating task.
As the number of used scale features increased, the best average ACC increased gradually.
This indicates that multi-scale features can help the network in determining the location of
MI, which was proved in Section 3.3.
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3.3. Verifying Training Effectiveness

To examine the occurrence of overfitting and overtraining, results were collected and
analyzed. Figure 9 shows the box plot and significance of the accuracy of the proposed
network. It can be observed in the left graph that using a model that was too robust for
the current task will, on the contrary, lower the performance of the model from 95.76% to
94.95% (p < 0.05) due to overfitting.
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Figure 9. Box plot and significance of the accuracy of the proposed network where 1S indicates
models using single-scale features, 9F indicates models using nine filters, and so on. (a) Evidence
that supports accuracy decrease due to overfitting caused by excessive model strength. The average
accuracy decreased from 95.76% to 94.95% (p < 0.05); (b) Evidence that supports using multi-scale
features will increase MI locating accuracy. The average accuracy increased from 60.49% to 61.82%
(p < 0.05).

Hence, the use N-Net instead of MSN-Net for MI detection tasks is preferred. On the
other hand, using multi-scale features can increase the accuracy of the model from 60.49%
to 61.82% (p < 0.05) during MI locating tasks. This can be observed in the graph on the right.
It is, therefore, useful to use multi-scale features to enhance the performance of the model.
In examining the occurrence of overtraining, one should normally be able to determine
whether the validated loss was increased during training. However, in this case, both the
training and validation curves had a similar trend. It can be found in Figure 10a that both
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trained and validated loss curves had a similar profile. The loss dropped exponentially
and then converged between 0.1 and 0.15. A similar but opposite profile can be found
in Figure 11b. Hence, the phenomenon of overtraining did not occur. A significant detail
shows that the final trained loss was larger than the final validated loss, whereas the final
trained accuracy was higher than validated accuracy. This is due to the fact that the model
correctly predicted the label, but only with the confidence that was slightly above 50%.
From Figure 10c, it can be seen that during the training stage of the MI locating model,
the network had a harsh time optimizing the loss function. Moreover, the validated loss
was not as low as that of the trained loss. The same situation can be found in Figure 10d,
which points out that there was serious RIV in the dataset, but at least the model was
not overtrained. Conclusively, both overfitting and underfitting did not occur in the MI
detection model and MI locating model. This is because the models were simple or robust
and selected the best one that lies between them. In addition, by examining both the
training and validation curves, it can be concluded that overtraining and undertraining
were not the case.
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Figure 10. The performances of the proposed networks were recorded during each epoch where 1S
indicates networks using single-scale features, 9F indicates networks using nine filters, and so on.
(a) Trained and validated loss of MI detection model during each epoch; (b) Trained and validated the
accuracy of MI detection model during each epoch; (c) Trained and validated loss of MI locating model
during each epoch; (d) Trained and validated the accuracy of MI locating model during each epoch.

3.4. Comparing with State-of-the-Art

The MFB-CNN [26], ML-ResNet [31], and Shallow-CNN [28] were retrained under
the validating scheme using the rearranged dataset. Fifteen (15) times subject-based 5-fold
CV were executed on each model.

The ACC was recorded and used to generate the box plot and calculate the significant
difference compared to the proposed model. Only MI detection performances were used
to derive SEN, SPE, F1, and AUC, which is due to the fact that these parameters were
internally designed to investigate the binary classification performance. By looking at the
box plot in Figure 11a,b, it is clearly illustrated that the average accuracy was higher than
the rest. By employing the U test, p < 0.001 was given in all previous works, which implies
that the N-Net and MSN-Net outperformed in the MI detection task and MI locating task,
respectively. As for clinical indexes shown in Figure 11c,f, the SEN was significantly higher
than MFB-CNN (p < 0.001). It showed no difference compared to ML-ResNet and Shallow-
CNN. The rest of the performances, including SPE, F1, and AUC, showed promising.
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using single-scale features, 9F indicates models using nine filters, and so on. Single star interprets
p < 0.05, double star interprets p < 0.01, and triple star interprets p < 0.001. (a) MI detection accuracy
comparison; (b) MI locating accuracy comparison; (c) MI detection sensitivity comparison; (d) MI
detection specificity comparison; (e) MI detection F1-score comparison; and (f) MI detection area
under the receiver operating characteristic curve comparison.

4. Discussion

N-Net for the MI detection task and an MSN-Net for MI locating task were developed.
By carefully designing and validating the network robustness, the performance distribution
of N-Net and MSN-Net under different parameters were recorded, and the best one was
selected. The results showed that both MI detection and MI locating outperformed the cur-
rent state-of-the-art. However, the results need to be justified. Furthermore, some detailed
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issues were not taken into consideration in this work. Additionally, to clarify some potential
directions of on-going studies, all the above will be discussed in the following sections.

4.1. Verifying the Results of the Proposed N-Net and MSN-Net

In the developing phase of the model, by starting from the simplest network, in-
crementing the model complexity, and finding the best one among them, the issues of
overfitting and underfitting were detected and thus, addressed. In other words, structures
that were simpler with respect to the best one can refer to as underfitting and vice versa.
Previous works straightforwardly start from a complex model, and as they are revalidated,
excessive model strength exhibited a decrease in performances due to overfitting. As such,
it is considered that overfitting has also occurred in the network design. Hence, the pro-
posed networks exhibited better performance, and that the proposed networks were less
overfitted compared to previous works. During the developing stage of the model, starting
from the simplest model and proceeding with gradually increasing the model complexity
should be considered.

4.2. Issues While Validating the Proposed Network Design

Though the structure of the proposed networks was carefully validated, some detailed
issues need to be considered further. First of all, the validation scheme incremented the
input signal scale and tested it on each network structure. To improve on this validation
scheme, testing can be conducted independently on each kind of input scale. The best ones
are then selected and incorporated into those structures and revalidate the new integrated
network. Such an experimental scheme can validate which of the input scales contain
more features that are more relevant to the task at that particular time, thus utilizing the
multi-scale features more effectively. In addition, by comparing the proposed network
structure, it can be seen that the design is quite similar to the Inception module [29] and
the one that utilizes it on IMI detection [28]. Larger features were extracted by pooling the
signals, whereas the latter extract larger features by expanding the kernel size. It remains a
question as to which of the network structures would achieve better performance. Another
interesting thing to consider is which network can complete one prediction faster. The
Inception module [29] extracts larger features by using wider kernels which contain more
parameters and will lengthen the time it takes in executing convolution. This directly
affects the time required to complete a forward pass, which in turn directly affects the time
it takes to give a prediction making it less suitable for real-time portable devices.

4.3. Limitations of the Proposed Experimental Scheme

One limitation of the proposed experimental scheme is that the class imbalance
problem was addressed using under sampling, a data level method that is simple but
makes it impossible to directly compare the results of the proposed model with the other
existing works. This is due to the fact that a different dataset in this study was used. To
overcome this drawback, a better data level approach can be utilized and can be found
in [40] or consider using another category of approaches, called classifier level methods.
These classifier level methods keep the dataset unchanged while adjusting the process of
learning or training, as discussed in [50].

4.4. Potential for Future Study

This study can be extended by developing a computer-aided diagnosis system to
lower the computational cost and achieve real-time functionality through a simple yet
accurate model. In Section 4.2, examining which of the input scale will yield the best
results can be explored. Further validation can be conducted to determine if the proposed
design or the Inception modulus [29] is better at extracting multi-scale features. It is also
significant to determine and compare the average time it takes for the network to complete
a forward pass. Moreover, the geometric separability index [60] can be explored to examine
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the quality of features extracted by Inception modulus [29] and the proposed method and
ultimately, implement the final model in portable devices.

5. Conclusions

In this research, data collection, preprocessing, and rearrangement were implemented
for training the proposed N-Net and MSN-Net. To carefully verify the occurrence of un-
derfitting and overfitting, two hyperparameters, the number of filters in the convolutional
layer, and the number of inputting scales remained variable for tuning the best structure.
Furthermore, 15 times patient-based 5-fold CV was run on each candidate model, and the
best structures were obtained by comparing the average accuracy. As a result, the N-Net
that used single-scale features together with nine filters (1S-9F) yielded a 95.76% average
accuracy in MI detection, whereas the MSN-Net that used four-scale features together
with nine filters yielded a 60.49% average accuracy in MI locating. By observing indexes
including ACC, SEN, SPE, F1, and AUC, together with significant differences evaluated
by the U test, both N-Net and MSN-Net outperformed the previous works considered in
this study in MI detection and locating tasks, respectively, which indicates that previous
works encountered the issue of overfitting. Furthermore, the MSN-Net outperformed the
N-Net in MI locating tasks, which means that multi-scale features can improve the MI
locating performance. More importantly, the proposed networks contained fewer parame-
ters, which points out the potential and suitability in the applications of wearable devices.
With all aforementioned promising results, several issues are yet to be explored, such as
assessing the quality of the extracted features since it can provide a clearer idea of how to
design the network. In future analysis, the testing model can be conducted independently
on each kind of input scale. This contains more features relative to the particular time in
each task, and then selecting these structures and incorporating them to revalidate the
new integrated network to improve the validation. Another recommendation is to deploy
the proposed models on portable devices to test their performance on a limited resource
device further.
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