11 research outputs found

    EpCAM-Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With Stem/Progenitor Cell Features

    Get PDF
    Cancer progression/metastases and embryonic development share many properties including cellular plasticity, dynamic cell motility, and integral interaction with the microenvironment. We hypothesized that the heterogeneous nature of hepatocellular carcinoma (HCC) may be, in part, due to the presence of hepatic cancer cells with stem/progenitor features

    CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity

    No full text
    Hepatocellular carcinoma (HCC) is a major health concern worldwide. A better understanding of the mechanisms underlying the malignant phenotype is necessary for developing novel therapeutic strategies for HCC. Signaling pathways initiated by neurotransmitter receptors, such as α5-nicotinic acetylcholine receptor (CHRNA5), have been reported to be implicated in tumor progression. However, the functional mechanism of CHRNA5 in HCC remains unclear. In this study, we explored the role of CHRNA5 in HCC and found that CHRNA5 expression was increased in human HCC tissues and positively correlated with the T stage (p < 0.05) and AJCC phase (p < 0.05). The KM plotter database showed that the high expression level of CHRNA5 was strongly associated with worse survival in HCC patients. Both in vitro and in vivo assays showed that CHRNA5 regulates the proliferation ability of HCC by regulating YAP activity. In addition, CHRNA5 promotes the stemness of HCC by regulating stemness-associated genes, such as Nanog, Sox2 and OCT4. Cell migration and invasion assays demonstrated that CHRNA5 significantly enhanced the metastasis of HCC by regulating epithelial–mesenchymal transition (EMT)-associated genes. Furthermore, we found that CHRNA5 regulates the sensitivity of sorafenib in HCC. Our findings suggest that CHRNA5 plays a key role in the progression and drug resistance of HCC, and targeting CHRNA5 may be a strategy for the treatment of HCC

    An Angiogenic Gene Signature for Prediction of the Prognosis and Therapeutic Responses of Hepatocellular Carcinoma

    No full text
    Among cancer-related deaths worldwide, hepatocellular carcinoma (HCC) ranks second. The hypervascular feature of most HCC underlines the importance of angiogenesis in therapy. This study aimed to identify the key genes which could characterize the angiogenic molecular features of HCC and further explore therapeutic targets to improve patients’ prognosis. Public RNAseq and clinical data are from TCGA, ICGC, and GEO. Angiogenesis-associated genes were downloaded from the GeneCards database. Then, we used multi-regression analysis to generate a risk score model. This model was trained on the TCGA cohort (n = 343) and validated on the GEO cohort (n = 242). The predicting therapy in the model was further evaluated by the DEPMAP database. We developed a fourteen-angiogenesis-related gene signature that was distinctly associated with overall survival (OS). Through the nomograms, our signature was proven to possess a better predictive role in HCC prognosis. The patients in higher-risk groups displayed a higher tumor mutation burden (TMB). Interestingly, our model could group subsets of patients with different sensitivities to immune checkpoint inhibitors (ICIs) and Sorafenib. We also predicted that Crizotinib, an anti-angiogenic drug, might be more sensitive to these patients with high-risk scores by the DEPMAP. The inhibitory effect of Crizotinib in human vascular cells was obvious in vitro and in vivo. This work established a novel HCC classification based on the gene expression values of angiogenesis genes. Moreover, we predicted that Crizotinib might be more effective in the high-risk patients in our model

    Differential combinatorial regulatory network analysis related to venous metastasis of hepatocellular carcinoma

    No full text
    Abstract Background Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world, and metastasis is a significant cause to the high mortality in patients with HCC. However, the molecular mechanism behind HCC metastasis is not fully understood. Study of regulatory networks may help investigate HCC metastasis in the way of systems biology profiling. Methods By utilizing both sequence information and parallel microRNA(miRNA) and mRNA expression data on the same cohort of HBV related HCC patients without or with venous metastasis, we constructed combinatorial regulatory networks of non-metastatic and metastatic HCC which contain transcription factor(TF) regulation and miRNA regulation. Differential regulation patterns, classifying marker modules, and key regulatory miRNAs were analyzed by comparing non-metastatic and metastatic networks. Results Globally TFs accounted for the main part of regulation while miRNAs for the minor part of regulation. However miRNAs displayed a more active role in the metastatic network than in the non-metastatic one. Seventeen differential regulatory modules discriminative of the metastatic status were identified as cumulative-module classifier, which could also distinguish survival time. MiR-16, miR-30a, Let-7e and miR-204 were identified as key miRNA regulators contributed to HCC metastasis. Conclusion In this work we demonstrated an integrative approach to conduct differential combinatorial regulatory network analysis in the specific context venous metastasis of HBV-HCC. Our results proposed possible transcriptional regulatory patterns underlying the different metastatic subgroups of HCC. The workflow in this study can be applied in similar context of cancer research and could also be extended to other clinical topics.</p

    A Long Non-coding RNA Signature to Improve Prognostic Prediction of Pancreatic Ductal Adenocarcinoma

    No full text
    Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive solid malignant tumors worldwide. Increasing investigations demonstrate that long non-coding RNAs (lncRNAs) expression is abnormally dysregulated in cancers. It is crucial to identify and predict the prognosis of patients for the selection of further therapeutic treatment. Methods: PDAC lncRNAs abundance profiles were used to establish a signature that could better predict the prognosis of PDAC patients. The least absolute shrinkage and selection operator (LASSO) Cox regression model was applied to establish a multi-lncRNA signature in the TCGA training cohort (N = 107). The signature was then validated in a TCGA validation cohort (N = 70) and another independent Fudan cohort (N = 46). Results: A five-lncRNA signature was constructed and it was significantly related to the overall survival (OS), either in the training or validation cohorts. Through the subgroup and Cox regression analyses, the signature was proven to be independent of other clinic-pathologic parameters. Receiver operating characteristic curve (ROC) analysis also indicated that our signature had a better predictive capacity of PDAC prognosis. Furthermore, ClueGO and CluePedia analyses showed that a number of cancer-related and drug response pathways were enriched in high risk groups. Conclusions: Identifying the five-lncRNA signature (RP11-159F24.5, RP11-744N12.2, RP11-388M20.1, RP11-356C4.5, CTC-459F4.9) may provide insight into personalized prognosis prediction and new therapies for PDAC patients

    Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer

    No full text
    Enolase 2 (ENO2) is a key glycolytic enzyme in the metabolic process of glycolysis, but its potential function in pancreatic ductal adenocarcinoma (PDAC) is unclear. In this study, we observed a significant overexpression of ENO2 in PDAC tissues, and its expression was correlated with metastasis and poor prognosis in PDAC patients. K394 was identified as a major acetylation site in ENO2 that regulates its enzymatic activity, cell metabolism and PDAC progression. Knockdown of ENO2 suppressed tumor growth and liver metastasis in PDAC. Re-expression of wild-type (WT) ENO2, but not the K394 acetylation mimetic mutant, could reverse the decreased tumor malignancy. We further characterized histone deacetylase 3 (HDAC3) and P300/CBP-associated factor (PCAF) as the potential deacetylase and acetyltransferase for ENO2, respectively. HDAC3-mediated deacetylation was shown to lead to ENO2 activation and enhancement of glycolysis. Importantly, insulin-like growth factor-1 (IGF-1) was found to decrease K394 acetylation and stimulate ENO2 activity in a dose- and time-dependent manner. The PI3K/AKT/mTOR pathway facilitated the phosphorylation of HDAC3 on S424, which promoted K394 deacetylation and activation of ENO2. Linsitinib, an oral small-molecule inhibitor of IGF-1R, could inhibit IGF-1-induced ENO2 deacetylation by HDAC3 and the PI3K/AKT/mTOR pathway. Furthermore, linsitinib showed a different effect on the growth and metastasis of PDAC depending on the overexpression of WT versus K394-mutant ENO2. Our results reveal a novel mechanism by which acetylation negatively regulates ENO2 activity in the metastasis of PDAC by modulating glycolysis. Blockade of IGF-1-induced ENO2 deacetylation represents a promising strategy to prevent the development of PDAC
    corecore