50 research outputs found

    Reliable Password Hardening Service with Opt-Out

    Get PDF
    As the most dominant authentication mechanism, password-based authentication suffers catastrophic offline password guessing attacks once the authentication server is compromised and the password database is leaked. Password hardening (PH) service, an external/third-party crypto service, has been recently proposed to strengthen password storage and reduce the damage of authentication server compromise. However, all existing schemes are unreliable because they overlook the important restorable property: PH service opt-out. In existing PH schemes, once the authentication server has subscribed to a PH service, it must adopt this service forever, even if it wants to stop the external/third-party PH service and restore its original password storage (or subscribe to another PH service). To fill the gap, we propose a new PH service called PW-Hero that equips its PH service with an option to terminate its use (i.e., opt-out). In PW-Hero, password authentication is strengthened against offline attacks by adding external secret spices to password records. With the opt-out property, authentication servers can proactively request to end the PH service after successful authentications. Then password records can be securely migrated to their traditional salted hash state, ready for subscription to other PH services. Besides, PW-Hero achieves all existing desirable properties, such as comprehensive verifiability, rate limits against online attacks, and user privacy. We define PW-Hero as a suite of protocols that meet desirable properties and build a simple, secure, and efficient instance. Moreover, we develop a prototype implementation and evaluate its performance, which shows the practicality of our PW-Hero service

    MMBcloud-tree: Authenticated Index for Verifiable Cloud Service Selection

    Get PDF
    Cloud brokers have been recently introduced as an additional computational layer to facilitate cloud selection and service management tasks for cloud consumers. However, existing brokerage schemes on cloud service selection typically assume that brokers are completely trusted, and do not provide any guarantee over the correctness of the service recommendations. It is then possible for a compromised or dishonest broker to easily take advantage of the limited capabilities of the clients and provide incorrect or incomplete responses. To address this problem, we propose an innovative Cloud Service Selection Verification (CSSV) scheme and index structures (MMBcloud-tree) to enable cloud clients to detect misbehavior of the cloud brokers during the service selection process. We demonstrate correctness and efficiency of our approaches both theoretically and empirically

    Denial-of-Service Attacks on Host-Based Generic Unpackers

    Get PDF
    China National Science FoundationThis research was mostly done when the first three authors, Limin Liu, Jiang Ming, and Zhi Wang, were researchers working in Singapore Management University. It was partially supported by National Science Foundation (NSF) China under the agreements 90718005, 70890084/G021102, and 60573015.</p
    corecore