25,049 research outputs found
Investigation of the energy dependence of the orbital light curve in LS 5039
LS 5039 is so far the best studied -ray binary system at
multi-wavelength energies. A time resolved study of its spectral energy
distribution (SED) shows that above 1 keV its power output is changing along
its binary orbit as well as being a function of energy. To disentangle the
energy dependence of the power output as a function of orbital phase, we
investigated in detail the orbital light curves as derived with different
telescopes at different energy bands. We analysed the data from all existing
\textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most
up-to-date orbital light curves at hard X-ray energies. In the -ray
band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data
between 30 MeV and 10 GeV in 5 different energy bands. We found that, at
100 MeV and 1 TeV the peak of the -ray emission is
near orbital phase 0.7, while between 100 MeV and 1 GeV it moves
close to orbital phase 1.0 in an orbital anti-clockwise manner. This result
suggests that the transition region in the SED at soft -rays (below a
hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to
the one of 0.0--0.5, when the compact object is "behind" its companion. Another
interesting result is that between 3 and 20 GeV no orbital modulation is found,
although \textit{Fermi}-LAT significantly (18) detects LS 5039.
This is consistent with the fact that at these energies, the contributions to
the overall emission from the inferior conjunction phase region (INFC, orbital
phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC,
orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power
output is again dominant in the INFC region and the flux peak occurs at phase
0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Isoflurane And Propofol Synergy In Reducing Heart-type Fatty Acid Binding Protein In Patients Undergoing Coronary Artery Bypass Graft Surgery
Conference Theme: Emerging Therapies for an Aging Populationpublished_or_final_versio
Exciton Valley Dynamics probed by Kerr Rotation in WSe2 Monolayers
We have experimentally studied the pump-probe Kerr rotation dynamics in
WSe monolayers. This yields a direct measurement of the exciton valley
depolarization time . At T=4K, we find ps, a fast
relaxation time resulting from the strong electron-hole Coulomb exchange
interaction in bright excitons. The exciton valley depolarization time
decreases significantly when the lattice temperature increases with
being as short as 1.5ps at 125K. The temperature dependence is well explained
by the developed theory taking into account the exchange interaction and a fast
exciton scattering time on short-range potentials.Comment: 5 pages, 3 figure
Generalized Relativistic Meson Wave Function
We study the most general, relativistic, constituent meson
wave function within a new covariant framework. We find that by including a
tensor wave function component, a pure valence quark model is now capable of
reproducing not only all static pion data (, )
but also the distribution amplitude, form factor , and structure
functions. Further, our generalized spin wave function provides a much better
detailed description of meson properties than models using a simple
relativistic extension of the nonrelativistic wave function.Comment: 17 pages, REXTeX 3.0 file, (uuencoded postscript files of 8 figures
appended
Adaptive Genetic Algorithm for Crystal Structure Prediction
We present a genetic algorithm (GA) for structural search that combines the
speed of structure exploration by classical potentials with the accuracy of
density functional theory (DFT) calculations in an adaptive and iterative way.
This strategy increases the efficiency of the DFT-based GA by several orders of
magnitude. This gain allows considerable increase in size and complexity of
systems that can be studied by first principles. The method's performance is
illustrated by successful structure identifications of complex binary and
ternary inter-metallic compounds with 36 and 54 atoms per cell, respectively.
The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to
56 atoms is also reported. Such phase is likely to be an essential component of
terrestrial exoplanetary mantles.Comment: 14 pages, 4 figure
Capture on High Curvature Region: Aggregation of Colloidal Particle Bound to Giant Phospholipid Vesicles
A very recent observation on the membrane mediated attraction and ordered
aggregation of colloidal particles bound to giant phospholipid vesicles (I.
Koltover, J. O. R\"{a}dler, C. R. Safinya, Phys. Rev. Lett. {\bf 82},
1991(1999)) is investigated theoretically within the frame of Helfrich
curvature elasticity theory of lipid bilayer fluid membrane. Since the concave
or waist regions of the vesicle possess the highest local bending energy
density, the aggregation of colloidal beads on these places can reduce the
elastic energy in maximum. Our calculation shows that a bead in the concave
region lowers its energy . For an axisymmetrical dumbbell
vesicle, the local curvature energy density along the waist is equally of
maximum, the beads can thus be distributed freely with varying separation
distance.Comment: 12 pages, 2 figures. REVte
A Unified Picture for Single Transverse-Spin Asymmetries in Hard Processes
Using Drell-Yan pair production as an example, we explore the relation
between two well-known mechanisms for single transverse-spin asymmetries in
hard processes: twist-three quark-gluon correlations when the pair's transverse
momentum is large, , and time-reversal-odd and
transverse-momentum-dependent parton distributions when is much less
than the pair's mass. We find that although the two mechanisms have their own
domain of validity, they describe the same physics in the kinematic region
where they overlap. This unifies the two mechanisms and imposes an important
constraint on phenomenological studies of single spin asymmetries.Comment: 4 pages, 3 figure
Tensile simulation of 6061 aluminum alloy
The quasi-static tensile simulation was carried out on the 6061 aluminum alloy round bar specimen, and the tensile specimen model was drawn. Three sets of simulation with uniaxial tensile velocity of 10 s-1, 15 s-1 and 20 s-1 were set at normal temperature, and the numerical simulation of the tensile process was carried out by using ABAQUS software. The experimental data were imported into the model, and the relevant parameters such as damage model were set. The derived simulation results are in good agreement with the experimental results, indicating that the established simulation model can simulate the uniaxial tensile behavior of 6061 aluminum alloy well
- âŠ