1,244 research outputs found

    Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty

    Full text link
    We consider query-based data acquisition and the corresponding information recovery problem, where the goal is to recover kk binary variables (information bits) from parity measurements of those variables. The queries and the corresponding parity measurements are designed using the encoding rule of Fountain codes. By using Fountain codes, we can design potentially limitless number of queries, and corresponding parity measurements, and guarantee that the original kk information bits can be recovered with high probability from any sufficiently large set of measurements of size nn. In the query design, the average number of information bits that is associated with one parity measurement is called query difficulty (dˉ\bar{d}) and the minimum number of measurements required to recover the kk information bits for a fixed dˉ\bar{d} is called sample complexity (nn). We analyze the fundamental trade-offs between the query difficulty and the sample complexity, and show that the sample complexity of n=cmax{k,(klogk)/dˉ}n=c\max\{k,(k\log k)/\bar{d}\} for some constant c>0c>0 is necessary and sufficient to recover kk information bits with high probability as kk\to\infty

    Symmetric Inkball Alignment with Loopy Models

    Get PDF
    Alignment tasks generally seek to establish a spatial correspondence between two versions of a text, for example between a set of manuscript images and their transcript. This paper examines a different form of alignment problem, namely pixel-scale alignment between two renditions of a handwritten word or phrase. Using loopy inkball graph models, the proposed technique finds spatial correspondences between two text images such that similar parts map to each other. The method has applications to word spotting and signature verification, and can provide analytical tools for the study of handwriting variation

    Functional Characterization of Siberian Wild Rye Grass \u3cem\u3eEsHSP 16.9\u3c/em\u3e Gene Conferring Diverse Stress Tolerance in Prokaryotic Cells

    Get PDF
    Siberian wild rye (Elymus sibiricus L.) is a perennial, caespitose, and self-pollinating grass indigenous to Northern Asia and also is widely distributed from Northern Europe to Japan. The plant shows strong environmental adaptability with tolerance to drought and cold; thus, it is often used as forage resources (Yan et al., 2007). Environmental stresses caused by global warming are acknowledged to be as a serious issue in agriculture due to reductions of crop productivity (Ahuja et al., 2010). Genetic natural breeding of Siberian wild rye would potentially increase the productivity of forage crops; however, genetic studies on this grass have yet to be conducted. Heat shock proteins (Hsps) are the well characterized stress inducible proteins playing as molecular chaperones in prokaryotes and eukaryotes. We have also identified two differently localized small Hsps: rice chloroplastic and alfalfa mitochondrial Hsps confer tolerance to oxidative and heat stresses in tall fescue and to salinity and arsenic stresses in E. coli, tobacco, and tall fescue, respectively (Lee et al., 2012a; Lee et al., 2012b). Here, we cloned the small Hsp16.9 gene from various heat stress-induced fragments in Siberian wild rye using differentially expressed gene (DEG) analysis. We examined the mRNA expression of EsHsp16.9, in vitro molecular chaperone activity and in vivo stress tolerance by using a prokaryotic system against diverse environmental stresse

    Viable stretchable plasmonics based on unidirectional nanoprisms

    Get PDF
    Well-defined ordered arrays of plasmonic nanostructures were fabricated on stretchable substrates and tunable plasmon-coupling-based sensing properties were comprehensively demonstrated upon extension and contraction. Regular nanoprism patterns consisting of Ag, Au and Ag/Au bilayers were constructed on the stretchable polydimethylsiloxane substrate. The nanoprisms had the same orientation over the entire substrate (3 x 3 cm(2)) via metal deposition on a single-crystal microparticle monolayer assembly. The plasmonic sensor based on the Ag/Au bilayer showed a 6-fold enhanced surface enhanced Raman scattering signal under 20% uniaxial extension, whereas a 3-fold increase was observed upon 6% contraction, compared with the Au nanoprism arrays. The sensory behaviors were corroborated by finite-difference time-domain simulation, demonstrating the tunable electromagnetic field enhancement effect via the localized surface plasmon resonance coupling. The advanced flexible plasmonic-coupling-based devices with tunable and quantifiable performance herein suggested are expected to unlock promising potential in practical bio-sensing, biotechnological applications and optical devices.11Ysciescopu
    corecore