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Abstract—Alignment tasks generally seek to establish a spatial
correspondence between two versions of a text, for example
between a set of manuscript images and their transcript. This
paper examines a different form of alignment problem, namely
pixel-scale alignment between two renditions of a handwritten
word or phrase. Using loopy inkball graph models, the proposed
technique finds spatial correspondences between two text images
such that similar parts map to each other. The method has
applications to word spotting and signature verification, and can
provide analytical tools for the study of handwriting variation.

Index Terms—alignment; inkball; handwriting; pattern recog-
nition;

I. INTRODUCTION

Alignment refers to the process of bringing two or more
corresponding patterns into juxtaposition, such that areas of
similar nature overlap. Within the realm of document analysis,
one familiar form of this problem is the alignment of a
document image with its transcript text. This is an example of
a one-dimensional alignment problem, since the positions of
the transcript characters are adjusted only along the horizontal
dimension. One-dimensional sequence alignment has been
well studied, and may be solved via algorithms such as dy-
namic time warping, hidden Markov models or connectionist
temporal classification.

This paper examines a different problem, namely flexible
fine-grained alignment in two dimensions at once. We seek
alignment at the pixel level between different versions of a
handwritten word. Figure 1 shows an example of such an
alignment, where each portion of one handwritten version of a
word is mapped to a corresponding portion of a second. Some
features of a word may be present in only one image; rather
than generating spurious matches for these portions, they are
flagged in red as unmatched components.

A. Related Work

Pixel-scale alignment of offline handwriting has received
some attention, albeit less than other alignment problems and
mostly for rigid or affine transformations. Alignment has long
been significant for online signature matching [1]. In other
contexts such as word spotting, pixel-scale alignment has been
treated more as a means to an end than as a goal in its own
right.

Some scholars have presented work which generates pixel
alignment between handwriting images under a limited set
of possible transformations. Manmatha et al. perform affine
alignment of word images using the general cost-weighted

Fig. 1. Alignment of one image with a second (shown to scale). Areas with
red dots have no match detected in the opposite image.

bipartite matching algorithm of Scott and Longuet-Higgins
[2], [3]. Learned-Miller also uses affine alignments of letter
instance samples [4]. Work on alignment using flexible (e.g.,
non-affine) transformations is less common. Hassner et al. use
an alignment based upon dynamic time warping to perform
transcript alignment, with intermediate steps of the algorithm
working at the pixel level [5]. Howe uses tree-structured
inkball models as a tool for offline word spotting, and also
to solve flexible keypoint alignment problems [6], [7]. Leung
and Suen describe a pattern alignment algorithm similar in
spirit to that proposed here [8]. It decomposes a signature into
line and curve primitives, then matches them symmetrically
via an iterative spatial warping process with a gradually
decreasing neighborhood of influence. Fang et al. later apply
this method to the signature verification task, not for directly
measuring similarity but to generate synthetic training samples
by interpolation [9].

This paper makes two novel contributions to research on
handwriting alignment. First, it drops the requirement found in
prior inkball work that all models of handwriting be structured
as a tree. Since most handwriting does include loops and
other cyclical structures, this allows for better handling of
realistic common scenarios. Second, it searches for a match be-
tween the two structures in a symmetric bidirectional manner,
whereas prior work matches in only one direction at a time.
Symmetric bidirectional matching explicitly penalizes many-
to-one matches, and provides a powerful corrective against
many common errors seen in prior inkball work. Figure 2
shows an example.

The next section proposes a novel algorithm for symmet-
ric flexible matching of handwriting keypoints. Section III
describes experiments that explore its properties. The last
section concludes by considering the meaning of the results
and proposing future work.



II. ALGORITHM

What does it mean to align two images of writing at the
pixel level, assuming that both images represent the same
word or piece of text? For documents produced by typewriter a
natural ground truth definition presents itself: ink pixels should
align if they were produced by contact with the same portion
of a given typewriter key. This concept may be expanded to
all printed text in a single font, under the mild assumption that
printed characters intended to be identical in shape are thus
functionally interchangeable.

For handwritten characters, whose appearance varies with
each instantiation, we can posit the existence of a canonical
character form (analagous to a Platonic ideal). Each pixel in
a particular written instance of a character may be attributed
to an imperfect reproduction of some corresponding point on
the ideal form. Pixel-scale alignment between two handwritten
characters thus means pairing points from each such that both
correspond to the same position on the ideal form.

In practice, ideal character forms are both hypothetical
and unknown. Yet they provide conceptual guidance about
the qualities of a good alignment between actual character
examples: distinctive points marked by curvature, extremity, or
juncture should correspond, while assignment of the the less
notable points between them should be smoothly continuous
and evenly distributed. These considerations guide qualitative
assessment of an alignment. Quantitative indicators can be
derived from applying the alignment toward some other task,
such as word spotting or signature verification.

With these considerations, an alignment of the ink skeleton,
or even a finite set of keypoints evenly spaced along it, can
stand in for a pixel-by-pixel alignment. Given an alignment of
keypoints, interpolation between them extends the alignment
to the entire skeleton. Points not on the skeleton may then
be aligned by interpolation along the segment between their
nearest skeleton point and the ink boundary. Figure 3 illustrates
this process. In practice, a full alignment rarely requires
computation because the keypoint alignment itself suffices for
most purposes. Note that the alignment specified by a keypoint
matching is more complex than warping and stretching of the
2D plane, since it allows the relative topology of the points to
change.

Keypoint alignment lends itself to an inkball representation
of handwriting, where written symbols are modeled as over-
lapping disks of ink arranged in a 2D spatial pattern. Each
keypoint represents the center of a disk of ink in this model.
Prior work has studied one-way matches between inkball mod-
els of handwriting and observed markings [6], [7]. It employs
an asymmetric matching process: a flexible model adapts to a
static target, and multiple model parts can match to the same
target structure without penalty. The new algorithm proposed
herein differs in that both sides of the comparison are inkball
models, and the goal is to find something close to a one-to-one
matching while also respecting the inherent geometry of the
two sides. In this sort of symmetric bidirectional match, each
side actively matches to the other, and the strongest bonds

Fig. 2. Difference between asymmetric (top pair) and symmetric matching
(bottom pair). The two asymmetric matches are inconsistent with each other,
yet do not pay any penalty as a result. The symmetric match enforces mutual
consistency, correctly assessing a penalty for aligning the top of the ‘l’ with
the letter ‘e’.

Fig. 3. Interpolation of a full pixel-scale alignment from keypoints. P is
aligned with P ′ when the proportional distances between E and S and
between k1 and k2 match those between E′ and S′ and between k′1 and
k′2 respectively.

form where the attraction is mutual on both sides. Figure 2
illustrates the difference between the two approaches.

To formalize this intuition, suppose that L and R represent
two inkball models to be compared, referred to respectively as
the left and right model. Models may be derived automatically
from images of handwriting by thinning to a single pixel width
skeleton and placing inkballs (keypoints) at the endpoints,
junctions, and at regularly spaced intervals on all branches.
Label the keypoints kLi and kRj , where 1 ≤ i ≤ nL and
1 ≤ i ≤ nR. (Throughout this paper the designations L and R
will consistently indicate the model to which a particular entity
belongs.) Each keypoint has a set of neighbors as indicated by
the connectivity of the skeleton and denoted HL

i or HR
j .

A perfect alignment would pair each kLi with exactly one
kRj and vice versa. The possibility that nL 6= nR means
that perfect alignment may not be attainable in practice.
Furthermore, either image may contain extraneous structure
not present in the other, meaning that some keypoints should
not be assigned a corresponding node even if the numbers
allow it. To handle this situation, we can define alignment
as a directional bipartite match between the expanded sets
{kLi } ∪ {∅L} and {kRi } ∪ {∅R}, where pairings to ∅L and ∅R
indicate null matches. We can represent the assignment using
two functions AL(kLi )→ kRj and AR(kRj )→ kLi .

Many assignments are possible within the framework just



described, but few will respect the geometrical arrangement
and connectivity of the original keypoints. Qualitatively speak-
ing, the best alignment maps keypoints to locations that
preserve their relative positions as compared to neighboring
points. Suppose that the keypoint locations in the source image
are vL

i and vR
j respectively, and their new configurations

under a proposed alignment are given by cLi and cRj . Simple
rigid translation by a vector w is one possible alignment that
perfectly preserves geometry.

cLi = vL
i +w⇒ cLi −cLi′ = (vL

i +w)− (vL
i′ +w) = vL

i −vL
i′

(1)
More likely there will be some deformation δ between the
default and aligned configurations but for desirable alignments
the magnitude should be small, particularly between neighbor-
ing keypoints.

cLi − cLi′ = vL
i − vL

i′ + δLii′ (2)

The magnitudes of the observed deformations δLii′ and δRjj′ will
be used below (see Equation 10) to compute a deformation
mismatch energy E∆.

A. Measurement

Given proposed configurations for each side, a precise
definition of the alignment quality can now be given. Broadly
speaking the chosen definition encompasses three different
pieces: the proximity of configured nodes to a corresponding
target on the opposite side, the consistency of the implied pair-
ing given model connectivity, and the deformations embodied
in the configuration itself. It is convenient to formulate quality
as an energy to be minimized.

E = λMEM + λAEA + λ∆E∆ (3)

The first term is computed from the configuration vectors
under the assumption that each keypoint maps to its closest
point on the opposite side. This provides both the keypoint
assignment and a set of distances to sum.

AL(kLi ) = kRj : j = arg min
k

‖vR
k − cLi ‖ (4)

εLi = min
k
‖vR

k − cLi ‖ (5)

EM =
1

nL

∑
i

εLi +
1

nR

∑
j

εRj (6)

The second term captures the self-consistency of the implied
alignment. An ideal alignment arranges keypoints in perfect
pairs, e.g., AR(AL(kLi )) = kLi . In cases of misalignment,
where AR(AL(kLi )) 6= kLi , the severity of the mismatch
depends on the separation of the matched nodes, i.e., how
far one must travel through the keypoint graph to find a return
path, quantified via the geodesic distance functions GL and
GR.

EA =
1

nL

∑
i

TL(kLi ) +
1

nR

∑
j

TR(kRj ) (7)

TL(kLi ) = min
k

[
GR(AL(kLi ), kRk ) +GL(AR(kRk ), kLi )

]
(8)

TR(kRj ) = min
k

[
GL(AR(kRj ), kLk ) +GR(AL(kLk ), kRj )

]
(9)

The functions TL and TR measure the round trip distance
from a keypoint to its associated node and back again via
geodesic paths (always zero in the case of a perfect pairing).

The third term in the energy measures how much the
original structure must be deformed to achieve the chosen
configuration.

E∆ =
1

nL

∑
i

∑
h∈HL

i

‖δih‖+
1

nR

∑
j

∑
h∈HR

j

‖δjh‖ (10)

The above equations do not account for keypoints that may
have no proper match in the opposite image. Without proper
handling these may be assigned a spurious match at very
high energy. To achieve more stable results, a modified energy
formula limits the maximum effect of unmatched nodes. For
brevity, we define ξLi =

∑
h∈HL

i
‖δih‖, and also assume below

that λM = λA = λ∆ = 1. Thresholds τ1 and τ2 set the
standard maximum per-node energy contribution.

E∗ =

1

nL

∑
i

[
min

(
τ1, ε

L
i + TL(kLi )

)
+ min

(
τ2, ξ

L
i

)]
+

1

nR

∑
j

[
min

(
τ1, ε

R
j + TR(kRj )

)
+ min

(
τ2, ξ

R
j

)]
(11)

B. Optimization

Finding a good alignment under the conditions above is
not easy, since moving one point in a configuration affects
each of its neighbors. Loop connections in written symbols
create cycles in the neighbor graph, introducing the potential
for complicated feedback. Perfect optimization in similar
systems has been shown to be NP hard, yet nevertheless
good results have been obtained in practice using message
passing algorithms [10], [11]. This paper therefore seeks to
develop a set of promising optimization heuristics, with the
goal of achieving a high-quality final outcome despite a lack
of theoretical guarantees.

The algorithm operates in rounds. Each keypoint maintains
a state ψL

i or ψR
j representing a probability distribution for its

possible location over 2D image space. (For both convenience
and numeric stability, all 2D distributions are represented
computationally as negative log probabilities sampled on a
pixel-resolution grid.) During a round, each keypoint receives
messages from its neighbors and also incorporates information
from the oppositely aligned model to update its state. The
positions of most keypoints usually stabilize after just a half
dozen rounds or so, while a few take longer to settle.

1) Initialization: Because the optimization is heuristic
rather than exact, the initialization of the keypoints influences
the end result. A slight bias towards likely pairings can help the
solution to converge quickly, but overcommitment at this stage
can also lead to suboptimal results. The proposed initialization
strategy starts with plausible relative probabilities for matching
at each of the opposite model’s keypoints, and expands this to



a full 2D probability distribution via the following process: (1)
interpolate squared log probabilities between keypoints on the
handwriting skeleton; (2) use a generalized distance transform
(GDT) [12] to extend to all other points by adding their
squared distance from the skeleton as a penalty; (3) normalize
the entire 2D probability distribution to sum to 1.

Let S(...) denote the function from a keypoint value set
to 2D probability distribution just described. We use the
difference in the local skeleton tangent angle between the left
and right keypoints (denoted α below) to generate the keypoint
value set, and thence the full probability distributions.

ψL
i = SR(α(kLi , k

R
1 ), α(kLi , k

R
2 ), ...) + λPP

R(kLi ) (12)

The second term PR(kLi ) is a simple Gaussian potential,
centered at the relative x and y percentile position of kLi in
the image. It favors solutions that match keypoints in similar
positions.

2) Update: During a round, keypoints update sequentially
in a randomly chosen order. Each keypoint incorporates the
current state of its neighbors, translated by an offset taken
from the original model configuration, diffused to account for
flex in the model, and renormalized to sum to 1.

ψL
i ← N

ψL
i +

∑
h∈HL

i

Υ(ψL
h ,v

L
h − vL

i )

 (13)

Here N(·) signifies normalization, and Υ(ψL
h ,v

L
h − vL

i ) first
translates ψL

h by vL
h −vL

i and then applies the GDT. Note that
the GDT here is used for tractability, in lieu of a more exact
computation of the probability diffusion.

At the end of the round, the state of every node is updated
further using information from the opposite model. First we
find the cross probabilities pLij and pRji by evaluating the a
keypoint’s distribution at the locations of the nodes in the
opposite model.

pLij = N∗(ψR
j (vL

i )) (14)

pRji = N∗(ψL
i (vR

j )) (15)

Here N∗(·) indicates that normalization is applied over the set
of keypoints only. Thus pLij gives the probability that keypoint
kRj aligns with kLi .

This information is used in two ways. First, all states are
updated by a distribution derived from the partner probabili-
ties.

ψL
i ← N

(
ψL
i + SR(pLi1, p

L
i2, ...)

)
(16)

Second, we can detect keypoints that have no corresponding
partner on the other side.

qLi = max(0, 1−
∑
j

pLij) (17)

The state of these nodes is updated further, mixing with a
uniform distribution over all locations at total probability qLi .

3) Finalization: The message passing stages run for R
rounds, after which the marginal configuration can be read
directly from the node states.

cLi = arg min
w

ψL
i (w) (18)

Depending upon the complexity of the patterns to be matched,
the probability maps for some points may exhibit multiple
competing modes even after iteration. In this case the marginal
configuration may end up with large discontinuities between
the final positions of neighboring nodes where the most likely
mode undergoes a transition. To mitigate this, a globally con-
sistent configuration can be estimated by fitting a traditional
tree-structured inkball model, using the node states as the
data term. This technique essentially applies an asymmetric
process on top of the symmetric match results, so we refer to
it as hybrid symmetric. It tends to produce configurations with
smaller displacements between neighbors, but reintroduces a
small possibility of inconsistencies between the matches in
each direction.

III. EXPERIMENTS

Pixel-scale keypoint alignment can serve as a diagnostic and
analytical tool for handwriting comparison. It also offers po-
tential applications in signature verificaton and word spotting,
although current implementations are too slow for practical
use in the latter role. This paper aims to demonstrate the basic
capabilities of the method in various areas. Exhaustive testing
for any particular application is left as future work.

A. Word Spotting

Although current implementations are too slow for full-scale
word spotting applications, the proposed technique may be
useful as a tool for reranking images retrieved by another faster
method. The George Washington dataset [13] makes a useful
test case for this hypothesis because it is familiar and well
studied. We examine one-shot single-word queries, without
training. Each word image can form a query in leave-one-out
mode and there is no need for a train/test split. Of the 4857
segmented words in the 20-page set, 4161 appear more than
once and therefore can serve as useful test queries.

The experimental protocol begins with an initial ranking
of all the target words produced using an asymmetric part-
structured inkball model match, as described in prior work [6].
Following this, the top k words are reranked using six rounds
of the symmetric two-way match described in Section II.
The mean average precision over these k retrievals serves
to measure the quality of the reranking. Figure 4 shows the
relative performance of the proposed technique as compared
to the original ranking, for various values of k. Both the fully
symmetric and hybrid symmetric results greatly improve on
the asymmetric result, with the fully symmetric match slightly
ahead.

Reranking using the proposed technique greatly improves
on the earlier inkball method for word spotting. It does
not compete with learning-based approaches to this problem,
several versions of which achieve mean average precision in



Fig. 4. Mean average precision within top k reranked results for one-shot
query by image protocol. (Computed over queries with at least one hit in the
original top k results.) State of the art shown for comparison [14].

the high 90s [15], [16]. On the other hand, such methods
typically rely on offline training with data from the target
collection or something similar. By contrast, inkball methods
work on a single example without offline training.

B. Signature Matching

Signatures offer a promising area for alignment analysis.
While each instance is unique, genuine signatures come from
a single writer and thus presumably share a strong underlying
prototype. They are often complex relative to ordinary writ-
ing, and may include flourishes and complicated overwriting.
These features mean that individual instances may differ
markedly in topology, specifically in terms of which strokes
cross each other and where.

Signature matching comes in two modes, termed online
and offline. The former allows use of temporal sequence
information about the strokes that form the writing, while the
latter provides only images of a complete signature. Online
data typically includes a the pen tip location over time, and
may include pressure data as well, or at least pen up/pen down
indications.

Online data present an opportunity to develop inkball mod-
els in a more realistic manner. With offline images, the stroke
order at crossings is unclear, resulting a model with junctions
even though the actual pen trajectory is a 1D curve. Although
some crossings are intentional, others may result incidentally
from a flourish that can intersect at different points in each
rendition of a signature. Online data offer a way to model
different topologies by using pen trajectory itself as the model.
Choosing keypoints at regular intervals along the trajectory,
and creating neighbor relations only with the previous and
next points on the trajectory, we create a model that closely
mimics the behavior of the actual writing. In particular, points
that result from distant portions of the pen trace will not be
strongly contrained to cross at particular locations.

Given inkball models built from both online and offline
signatures, it becomes possible to compare online versions to

offline within a single framework. This offers an advantage
in realistic applications: even if online signatures are not
generally available, procuring a single online sample for each
user can be achieved at a much lower cost. Matching an online
sample to an offline version may offer many of the advantages
of online algorithms, without as many constraints on practical
implementation. The computational cost of online and offline
models are similar.

We test these hypotheses on a portion of the GPDS synthetic
online/offline signature data set [17], [18]. This set comprises
100 writers, with 24 genuine signatures and 30 skilled forg-
eries for each. In addition to the signature images, online trace
information is available, including 2D position and pressure
information at regular time intervals. To convert the latter to
inkball models, cubic spline interpolation renders the pen trace
as a skeleton of 8-connected pixels. Keypoints are selected at
regular intervals covering the pen-down regions, defined as
any position where pressure exceeds a low threshold (10% of
the maximum range). Offline images of signatures are also
converted to inkball models using the procedure described in
Section II. Although the online and offline models have very
different structures, they can still be matched against each
other.

Table I summarizes the results of several experiments run
on the GPDS set, using the first ten genuine and ten forged
signatures for each. The first genuine signature is used as
the test in each case. Condition 1 does symmetric matching
using a left model built from the non-branching online pen
trace of the test signature, and a right model built from the
offline target image. Condition 2 uses both left and right
models built from the offline images. Conditions 3 and 4
repeat experiments using the models from 1 and 2 with a
hybrid symmetric match. Finally, conditions 5 through 7 are
control experiments based on prior work: conditions 5 and 6
perform two opposite asymmetric inkball matches using the
models from conditions 1 and 2 and taking the maximum of
their energies, while condition 7 uses only a one-way offline
match. (Since asymmetric matches require a tree structure, any
loops in the model are broken arbitrarily.) In each case, the
model fitting gives an energy score that measures the quality
of the match. The table shows the equal error rate accuracy of
a threshold classifier based upon the fitting energy, with the
appropriate threshold tuned for each writer. A right-tailed T
test indicates that condition 3 is significantly better than both
condition 1 (p < 0.01) and conditions 5-6 (p < 0.025) but the
improvement on conditions 2 and 4 is only marginal (p < 0.1).
All conditions 1-6 are significantly better than 7 (p < 0.025).

The results here appear better than published error rates
on this data set [18], but no firm conclusions can be drawn
because the experiments use just a subset of the available sig-
natures. The one-way offline-to-offline asymmetric technique
(condition 7) has previously been found to be competitive with
state of the art methods on other datasets [19].

The GPDS is particularly challenging for the proposed
technique because many signatures feature overwriting with
closely spaced and nearly parallel lines, which are difficult



TABLE I
SIGNATURE VERIFICATION RESULTS ON GPDS SUBSET

Condition Equal Error Rate
1. Online to offline symmetric 16.6%
2. Offline to offline symmetric 14.8%
3. Online to offline hybrid 12.4 %
4. Offline to offline hybrid 14.6 %
5. Online to offline asymmetric 16.2 %
6. Offline to offline asymmetric 15.6 %
7. Offline to offline one-way 20.8 %
*Ferrer et al. [18] (*full set) 16.4%

Fig. 5. Seven versions of the term ‘16th’ with superimposed keypoint color
coding based on satisfaction scores. Green areas are well matched in other
images, while red indicates rare or poorly matched features.

for the algorithm to distinguish from each other. This may
explain the difference in results observed between conditions
1 and 3, which both use models built from the online pen
trace. Examination of the condition 1 results shows that the
matched position occasionally jumps between parallel lines.
The hybrid symmetric result in condition 3 suppresses such
artifacts and therefore can produce a better result. Note that
although these two conditions start with online pen traces, all
models are purely geometric and do not make use of velocity
information.

C. Analytical Tool

Properties of the keypoint match can be measured and used
to draw useful analytical conclusions. One example is keypoint
satisfaction, defined as the extent to which a keypoint’s match
is mutually returned.

sLi = max
j
pLijp

R
ji (19)

Figure 5 shows an example visualization created based upon
satisfaction scores. Multiple examples of a selected word are
compared against each other, and the satisfaction is tallied
at each keypoint. The resulting scores are displayed in the
figure by means of color codes placed on top of the original
word images. Features that do not commonly appear in the
other renditions get low scores, shown in red. The technique
identifies unusual features such as stray marks, long extensions
on the crossbar of the letter t, and the split stroke on the
numeral one which appears in some examples but not others.

IV. CONCLUSION

This paper has proposed to perform pixel-scale alignment
via a symmetric keypoint matching algorithm, using mes-
sage passing on a structural graph. Over all the results look
promising, even if the method does present some limitations.
It currently runs relatively slowly due to the many image
translations that must be computed during the update stage

(Equation 13). This computation can be parallelized, and in
the future a GPU implementation of the alignment algorithm
should perform significantly faster and allow much more
thorough experimentation.

Pixel-scale alignment of handwriting images deserves fur-
ther study on its own merits, besides its use as a step toward
accomplishing other tasks. Beyond the methods presented
herein, it would be worthwhile to explore alternate techniques
using other approaches, perhaps based upon deep learning or
other trained methods. Reliable tools for such alignment can
provide insight on handwriting style and its variations, and
may yet lead to hitherto unforeseen applications.
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