33,321 research outputs found

    Effective field theory description of halo nuclei

    Full text link
    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4^4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2 incorporates several modifications, particularly to the Introduction, in response to referee reports. It also corrects multiple typos in the original submission. It corresponds to the published versio

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Localā€Regional Similarity in Drylands Increases During Multiyear Wet and Dry Periods and in Response to Extreme Events

    Get PDF
    Climate change is predicted to impact ecosystems through altered precipitation (PPT) regimes. In the Chihuahuan Desert, multiyear wet and dry periods and extreme PPT pulses are the most influential climatic events for vegetation. Vegetation responses are most frequently studied locally, and regional responses are often unclear. We present an approach to quantify correlation of PPT and vegetation responses (as Normalized Difference Vegetation Index [NDVI]) at the Jornada ARSā€LTER site (JRN; 550 km2 area) and the surrounding dryland region (from 0 to 500 km distance; 400,000 km2 study area) as a way to understand regional similarity to locally observed patterns. We focused on fluctuating wet and dry years, multiyear wet or dry periods of 3ā€“4 yr, and multiyear wet periods that contained one or more extreme high PPT pulses or extreme low rainfall. In all but extreme high PPT years, JRN PPT was highly correlated... (See article for full abstract)

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Anatomy of relativistic pion loop corrections to the electromagnetic nucleon coupling

    Get PDF
    We present a relativistic formulation of pion loop corrections to the coupling of photons with nucleons on the light front. Vertex and wave function renormalization constants are computed to lowest order in the pion field, including their nonanalytic behavior in the chiral limit, and studied numerically as a function of the ultraviolet cutoff. Particular care is taken to explicitly verify gauge invariance and Ward-Takahashi identity constraints to all orders in the mĻ€ expansion. The results are used to compute the chiral corrections to matrix elements of local operators, related to moments of deep-inelastic structure functions. Finally, comparison of results for pseudovector and pseudoscalar coupling allows the resolution of a longstanding puzzle in the computation of pion cloud corrections to structure function moments.Chueng-Ryong Ji, W. Melnitchouk, and A.W. Thoma

    Equivalence of pion loops in equal-time and light-front dynamics

    Full text link
    We demonstrate the equivalence of the light-front and equal-time formulations of pionic corrections to nucleon properties. As a specific example, we consider the self-energy of a nucleon dressed by pion loops, for both pseudovector and pseudoscalar pion-nucleon couplings. We derive the leading and next-to-leading nonanalytic behavior of the self-energy on the light-front, and show explicitly their equivalence in the rest frame and infinite momentum frame in equal-time quantization, as well as in a manifestly covariant formulation.Comment: 25 pages, 2 figures; typos corrected in Eqs. (A5), (A6), (A8

    Dynamical Creation of Fractionalized Vortices and Vortex Lattices

    Full text link
    We investigate dynamic creation of fractionalized half-quantum vortices in Bose-Einstein condensates of sodium atoms. Our simulations show that both individual half-quantum vortices and vortex lattices can be created in rotating optical traps when additional pulsed magnetic trapping potentials are applied. We also find that a distinct periodically modulated spin-density-wave spatial structure is always embedded in square half-quantum vortex lattices; this structure can be conveniently probed by taking absorption images of ballistically expanding cold atoms in a Stern-Gerlach field.Comment: 4 pages, 3 figures; published versio

    Generalized vector form factors of the pion in a chiral quark model

    Full text link
    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.Comment: Dedicated to the memory of Manoj K. Banerjee, to appear in a special issue of the Indian Journal of Physics, 6 pages, 4 figure

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabryā€“PĆ©rot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of Ā±0.4Ī¼m over a 721Ī¼m measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    Local Duality Predictions for x ~ 1 Structure Functions

    Get PDF
    Recent data on the proton F_2 structure function in the resonance region suggest that local quark-hadron duality works remarkably well for each of the low-lying resonances, including the elastic, to rather low values of Q^2. We derive model-independent relations between structure functions at x ~ 1 and elastic electromagnetic form factors, and predict the x -> 1 behavior of nucleon polarization asymmetries and the neutron to proton structure function ratios from available data on nucleon electric and magnetic form factors.Comment: 10 pages, 2 figures, typos in Eq. (2) correcte
    • ā€¦
    corecore