Climate change is predicted to impact ecosystems through altered precipitation (PPT) regimes. In the Chihuahuan Desert, multiyear wet and dry periods and extreme PPT pulses are the most influential climatic events for vegetation. Vegetation responses are most frequently studied locally, and regional responses are often unclear. We present an approach to quantify correlation of PPT and vegetation responses (as Normalized Difference Vegetation Index [NDVI]) at the Jornada ARS‐LTER site (JRN; 550 km2 area) and the surrounding dryland region (from 0 to 500 km distance; 400,000 km2 study area) as a way to understand regional similarity to locally observed patterns. We focused on fluctuating wet and dry years, multiyear wet or dry periods of 3–4 yr, and multiyear wet periods that contained one or more extreme high PPT pulses or extreme low rainfall. In all but extreme high PPT years, JRN PPT was highly correlated... (See article for full abstract)