46,277 research outputs found

    Weakly coupled s=1/2s = 1/2 quantum spin singlets in Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba3_3Cr2_2O8_8. Even without field, we found that there exist three singlet-to-triplet excitation modes in (h,h,l)(h,h,l) scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr5+(3d1)^{5+} (3d^1). The strong intradimer coupling of J0=2.38(2)J_0 = 2.38(2) meV and weak interdimer interactions (Jinter0.52(2)|J_{\rm inter}| \leq 0.52(2) meV) makes Ba3_3Cr2_2O8_8 a good model system for weakly-coupled s=1/2s = 1/2 quantum spin dimers

    Color-suppression of non-planar diagrams in bosonic bound states

    Full text link
    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3+13+1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc=3N_c=3, which supports the use of rainbow-ladder truncations in practical nonperturbative calculations within QCD.Comment: 12 pages, 7 figures. To appear in Physics Letters

    A Temperature Analysis of High-power AlGaN/GaN HEMTs

    Get PDF
    Galliumnitride has become a strategic superior material for space, defense and civil applications, primarily for power amplification at RF and mm-wave frequencies. For AlGaN/GaN high electron mobility transistors (HEMT), an outstanding performance combined together with low cost and high flexibility can be obtained using a System-in-a-Package (SIP) approach. Since thermal management is extremely important for these high power applications, a hybrid integration of the HEMT onto an AlN carrier substrate is proposed. In this study we investigate the temperature performance for AlGaN/GaN HEMTs integrated onto AlN using flip-chip mounting. Therefore, we use thermal simulations in combination with experimental results using micro-Raman spectroscopy and electrical dc-analysis.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls

    Get PDF
    We consider classical and quantum electromagnetic fields in a three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of the frequency Ω\Omega . The photons created by the parametric resonance are distributed in the wave number space around Ω/2\Omega/2 along the axis of the oscillation. When classical waves propagate along the waveguide in the one direction, we observe the amplification of the original waves and another wave generation in the opposite direction by the oscillation of side walls. This can be understood as the classical counterpart of the photon production. In the case of two opposite walls oscillating with the same frequency but with a phase difference, the interferences are shown to occur due to the phase difference in the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi

    Harmonic fields on the extended projective disc and a problem in optics

    Full text link
    The Hodge equations for 1-forms are studied on Beltrami's projective disc model for hyperbolic space. Ideal points lying beyond projective infinity arise naturally in both the geometric and analytic arguments. An existence theorem for weakly harmonic 1-fields, changing type on the unit circle, is derived under Dirichlet conditions imposed on the non-characteristic portion of the boundary. A similar system arises in the analysis of wave motion near a caustic. A class of elliptic-hyperbolic boundary-value problems is formulated for those equations as well. For both classes of boundary-value problems, an arbitrarily small lower-order perturbation of the equations is shown to yield solutions which are strong in the sense of Friedrichs.Comment: 30 pages; Section 3.3 has been revise
    corecore