research

Harmonic fields on the extended projective disc and a problem in optics

Abstract

The Hodge equations for 1-forms are studied on Beltrami's projective disc model for hyperbolic space. Ideal points lying beyond projective infinity arise naturally in both the geometric and analytic arguments. An existence theorem for weakly harmonic 1-fields, changing type on the unit circle, is derived under Dirichlet conditions imposed on the non-characteristic portion of the boundary. A similar system arises in the analysis of wave motion near a caustic. A class of elliptic-hyperbolic boundary-value problems is formulated for those equations as well. For both classes of boundary-value problems, an arbitrarily small lower-order perturbation of the equations is shown to yield solutions which are strong in the sense of Friedrichs.Comment: 30 pages; Section 3.3 has been revise

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019