The Hodge equations for 1-forms are studied on Beltrami's projective disc
model for hyperbolic space. Ideal points lying beyond projective infinity arise
naturally in both the geometric and analytic arguments. An existence theorem
for weakly harmonic 1-fields, changing type on the unit circle, is derived
under Dirichlet conditions imposed on the non-characteristic portion of the
boundary. A similar system arises in the analysis of wave motion near a
caustic. A class of elliptic-hyperbolic boundary-value problems is formulated
for those equations as well. For both classes of boundary-value problems, an
arbitrarily small lower-order perturbation of the equations is shown to yield
solutions which are strong in the sense of Friedrichs.Comment: 30 pages; Section 3.3 has been revise