88 research outputs found

    Aberrant Regulation of HDAC2 Mediates Proliferation of Hepatocellular Carcinoma Cells by Deregulating Expression of G1/S Cell Cycle Proteins

    Get PDF
    Histone deacetylase 2 (HDAC2) is crucial for embryonic development, affects cytokine signaling relevant for immune responses and is often significantly overexpressed in solid tumors; but little is known about its role in human hepatocellular carcinoma (HCC). In this study, we showed that targeted-disruption of HDAC2 resulted in reduction of both tumor cell growth and de novo DNA synthesis in Hep3B cells. We then demonstrated that HDAC2 regulated cell cycle and that disruption of HDAC2 caused G1/S arrest in cell cycle. In G1/S transition, targeted-disruption of HDAC2 selectively induced the expression of p16INK4A and p21WAF1/Cip1, and simultaneously suppressed the expression of cyclin D1, CDK4 and CDK2. Consequently, HDAC2 inhibition led to the down-regulation of E2F/DP1 target genes through a reduction in phosphorylation status of pRb protein. In addition, sustained suppression of HDAC2 attenuated in vitro colony formation and in vivo tumor growth in a mouse xenograft model. Further, we found that HDAC2 suppresses p21WAF1/Cip1 transcriptional activity via Sp1-binding site enriched proximal region of p21WAF1/Cip1 promoter. In conclusion, we suggest that the aberrant regulation of HDAC2 may play a pivotal role in the development of HCC through its regulation of cell cycle components at the transcription level providing HDAC2 as a relevant target in liver cancer therapy

    Effectiveness of COVID-19 XBB.1.5 monovalent mRNA vaccine in Korea: interim analysis

    Get PDF
    As coronavirus disease-2019 (COVID-19) becomes an endemic disease, the virus continues to evolve and become immunologically distinct from previous strains. Immune imprinting has raised concerns about bivalent mRNA vaccines containing both ancestral virus and Omicron variant. To increase efficacy against the predominant strains as of the second half of 2023, the updated vaccine formulation contained only the mRNA of XBB.1.5 sublineage. We conducted a multicenter, test-negative, case-control study to estimate XBB.1.5 monovalent vaccine effectiveness (VE) and present the results of an interim analysis with data collected in November 2023. Patients who underwent COVID-19 testing at eight university hospitals were included and matched based on age (19-49, 50-64, and β‰₯65 years) and sex in a 1:1 ratio. VE was calculated using the adjusted odds ratio derived from multivariable logistic regression. Of the 992 patients included, 49 (5.3%) received the XBB.1.5 monovalent vaccine at least 7 days before COVID-19 testing. Patients with COVID-19 (cases) were less likely to have received the XBB.1.5 monovalent vaccine (case 3.5% vs. control 7.2%, p=0.019) and to have a history of COVID-19 within 6 months (2.2% vs. 4.6%, p=0.068). In contrast, patients with COVID-19 were more likely to be healthcare workers (8.2% vs. 3.0%, p=0.001) and to have chronic neurological diseases (16.7% vs. 11.9%, p=0.048). The adjusted VE of the XBB.1.5 monovalent mRNA vaccine was 56.8% (95% confidence interval: 18.7-77.9%). XBB.1.5 monovalent mRNA vaccine provided significant protection against COVID-19 in the first one to two months after vaccination

    HDAC1 Inactivation Induces Mitotic Defect and Caspase-Independent Autophagic Cell Death in Liver Cancer

    Get PDF
    Histone deacetylases (HDACs) are known to play a central role in the regulation of several cellular properties interlinked with the development and progression of cancer. Recently, HDAC1 has been reported to be overexpressed in hepatocellular carcinoma (HCC), but its biological roles in hepatocarcinogenesis remain to be elucidated. In this study, we demonstrated overexpression of HDAC1 in a subset of human HCCs and liver cancer cell lines. HDAC1 inactivation resulted in regression of tumor cell growth and activation of caspase-independent autophagic cell death, via LC3B-II activation pathway in Hep3B cells. In cell cycle regulation, HDAC1 inactivation selectively induced both p21WAF1/Cip1 and p27Kip1 expressions, and simultaneously suppressed the expression of cyclin D1 and CDK2. Consequently, HDAC1 inactivation led to the hypophosphorylation of pRb in G1/S transition, and thereby inactivated E2F/DP1 transcription activity. In addition, we demonstrated that HDAC1 suppresses p21WAF1/Cip1 transcriptional activity through Sp1-binding sites in the p21WAF1/Cip1 promoter. Furthermore, sustained suppression of HDAC1 attenuated in vitro colony formation and in vivo tumor growth in a mouse xenograft model. Taken together, we suggest the aberrant regulation of HDAC1 in HCC and its epigenetic regulation of gene transcription of autophagy and cell cycle components. Overexpression of HDAC1 may play a pivotal role through the systemic regulation of mitotic effectors in the development of HCC, providing a particularly relevant potential target in cancer therapy

    Thin Film (La 0.7

    No full text

    Facile Ligand Exchange of Ionic Ligand-Capped Amphiphilic Ag<sub>2</sub>S Nanocrystals for High Conductive Thin Films

    No full text
    A surface ligand modification of colloidal nanocrystals (NCs) is one of the crucial issues for their practical applications because of the highly insulating nature of native long-chain ligands. Herein, we present straightforward methods for phase transfer and ligand exchange of amphiphilic Ag2S NCs and the fabrication of highly conductive films. S-terminated Ag2S (S–Ag2S) NCs are capped with ionic octylammonium (OctAH+) ligands to compensate for surface anionic charge, S2–, of the NC core. An injection of polar solvent, formamide (FA), into S–Ag2S NCs dispersed in toluene leads to an additional envelopment of the charged S–Ag2S NC core by FA due to electrostatic stabilization, which allows its amphiphilic nature and results in a rapid and effective phase transfer without any ligand addition. Because the solvation by FA involves a dissociation equilibrium of the ionic OctAH+ ligands, controlling a concentration of OctAH+ enables this phase transfer to show reversibility. This underlying chemistry allows S–Ag2S NCs in FA to exhibit a complete ligand exchange to Na+ ligands. The S–Ag2S NCs with Na+ ligands show a close interparticle distance and compatibility for uniformly deposited thin films by a simple spin-coating method. In photoelectrochemical measurements with stacked Ag2S NCs on ITO electrodes, a 3-fold enhanced current response was observed for the ligand passivation of Na+ compared to OctAH+, indicating a significantly enhanced charge transport in the Ag2S NC film by a drastically reduced interparticle distance due to the Na+ ligands

    Randomized, double-blind, multi-center, phase III clinical trial to evaluate the immunogenicity and safety of MG1109 (egg-based pre-pandemic influenza A/H5N1 vaccine) in healthy adults

    No full text
    Considering the pandemic potential of avian influenza A/H5N1, development of an effective and well-tolerated vaccine is an essential part of pandemic preparedness plans. This phase III, randomized, double-blind study was conducted to assess the immunogenicity and safety profile of an alum-adjuvanted, whole virion, pre-pandemic influenza A/H5N1 vaccine (MG1109). Healthy individuals were randomly assigned, in a 3:1 ratio, to receive two doses of either MG1109 or placebo containing alum gel. Immunogenicity was determined by hemagglutination inhibition (HI) and microneutralization (MN) assays. Solicited and unsolicited adverse events were assessed after vaccination. Among 420 enrolled subjects, 418 were available for safety analysis, and 298 MG1109 recipients were available for per-protocol immunogenicity analyses. According to the HI assays, after two vaccine doses, all three of the Committee for Medicinal Products for Human Use (CHMP) criteria were met against the vaccine strain for all age groups: seroprotection rate = 74.8% (95% CI: 69.9 – 79.8), seroconversion rate = 67.8% (95% CI: 62.5–73.1), and geometric mean titer ratio (GMTR) = 5.9 (95% CI: 5.4 – 6.4). According to the MN assays, the GMTR was 2.4 (95% CI: 2.1 – 2.7) and 7.0 (95% CI: 6.3 – 7.9) three weeks after the first and second vaccine doses, respectively. Solicited local and systemic adverse events were mostly mild to moderate and were not significantly different between MG1109 and placebo recipients. In conclusion, two-dose administration of alum-adjuvanted H5N1 pre-pandemic influenza vaccine (MG1109) was highly immunogenic and tolerable in adults
    • …
    corecore