52,360 research outputs found

    Counting Form Factors of Twist-Two Operators

    Get PDF
    We present a simple method to count the number of hadronic form factors based on the partial wave formalism and crossing symmetry. In particular, we show that the number of independent nucleon form factors of spin-n, twist-2 operators (the vector current and energy-momentum tensor being special examples) is n+1. These generalized form factors define the generalized (off-forward) parton distributions that have been studied extensively in the recent literature. In proving this result, we also show how the J^{PC} rules for onium states arise in the helicity formalism.Comment: 7 pages, LaTeX (revtex

    Fundamental Limits of Caching in Wireless D2D Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information on their devices, subject to a per-node storage capacity constraint. A similar problem has already been considered in an ``infrastructure'' setting, where all users receive a common multicast (coded) message from a single omniscient server (e.g., a base station having all the files in the library) through a shared bottleneck link. In this work, we consider a D2D ``infrastructure-less'' version of the problem. We propose a caching strategy based on deterministic assignment of subpackets of the library files, and a coded delivery strategy where the users send linearly coded messages to each other in order to collectively satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully decentralized implementation. Under certain conditions, both approaches can achieve the information theoretic outer bound within a constant multiplicative factor. In our previous work, we showed that a caching D2D wireless network with one-hop communication, random caching, and uncoded delivery, achieves the same throughput scaling law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to the coded multicasting gain of single base station transmission. It is therefore natural to ask whether these two gains are cumulative, i.e.,if a D2D network with both local communication (spatial reuse) and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show that these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information Theory, This is the extended version of the conference (ITW) paper arXiv:1304.585

    Enhancement of charged macromolecule capture by nanopores in a salt gradient

    Full text link
    Nanopores spanning synthetic membranes have been used as key components in proof-of-principle nanofluidic applications, particularly those involving manipulation of biomolecules or sequencing of DNA. The only practical way of manipulating charged macromolecules near nanopores is through a voltage difference applied across the nanopore-spanning membrane. However, recent experiments have shown that salt concentration gradients applied across nanopores can also dramatically enhance charged particle capture from a low concentration reservoir of charged molecules at one end of the nanopore. This puzzling effect has hitherto eluded a physically consistent theoretical explanation. Here, we propose an electrokinetic mechanism of this enhanced capture that relies on the electrostatic potential near the pore mouth. For long pores with diameter much greater than the local screening length, we obtain accurate analytic expressions showing how salt gradients control the local conductivity which can lead to increased local electrostatic potentials and charged analyte capture rates. We also find that the attractive electrostatic potential may be balanced by an outward, repulsive electroosmotic flow (EOF) that can in certain cases conspire with the salt gradient to further enhance the analyte capture rate.Comment: 10 pages, 6 Figure

    Deep Exclusive Scattering and Generalized Parton Distributions : Experimental Review

    Full text link
    Since the Generalized Parton Distribution theoretical framework was introduced in the late 90's, a few published and numerous preliminary results from Deep Exclusive Scattering (DES) have been extracted from non-dedicated experiments at HERA and Jefferson Lab. We review most of these results, comment on the ongoing dedicated research in this topic and conclude with the expectations from the next generation of experiments in the near future.Comment: 10 pages, 8 figures, Baryons '04 proceeding

    Noiseless coding for the magnetometer

    Get PDF
    Future unmanned space missions will continue to seek a full understanding of magnetic fields throughout the solar system. Severely constrained data rates during certain portions of these missions could limit the possible science return. This publication investigates the application of universal noiseless coding techniques to more efficiently represent magnetometer data without any loss in data integrity. Performance results indicated that compression factors of 2:1 to 6:1 can be expected. Feasibility for general deep space application was demonstrated by implementing a microprocessor breadboard coder/decoder using the Intel 8086 processor. The Comet Rendezvous Asteroid Flyby mission will incorporate these techniques in a buffer feedback, rate-controlled configuration. The characteristics of this system are discussed
    corecore