52,360 research outputs found
Counting Form Factors of Twist-Two Operators
We present a simple method to count the number of hadronic form factors based
on the partial wave formalism and crossing symmetry. In particular, we show
that the number of independent nucleon form factors of spin-n, twist-2
operators (the vector current and energy-momentum tensor being special
examples) is n+1. These generalized form factors define the generalized
(off-forward) parton distributions that have been studied extensively in the
recent literature. In proving this result, we also show how the J^{PC} rules
for onium states arise in the helicity formalism.Comment: 7 pages, LaTeX (revtex
Fundamental Limits of Caching in Wireless D2D Networks
We consider a wireless Device-to-Device (D2D) network where communication is
restricted to be single-hop. Users make arbitrary requests from a finite
library of files and have pre-cached information on their devices, subject to a
per-node storage capacity constraint. A similar problem has already been
considered in an ``infrastructure'' setting, where all users receive a common
multicast (coded) message from a single omniscient server (e.g., a base station
having all the files in the library) through a shared bottleneck link. In this
work, we consider a D2D ``infrastructure-less'' version of the problem. We
propose a caching strategy based on deterministic assignment of subpackets of
the library files, and a coded delivery strategy where the users send linearly
coded messages to each other in order to collectively satisfy their demands. We
also consider a random caching strategy, which is more suitable to a fully
decentralized implementation. Under certain conditions, both approaches can
achieve the information theoretic outer bound within a constant multiplicative
factor. In our previous work, we showed that a caching D2D wireless network
with one-hop communication, random caching, and uncoded delivery, achieves the
same throughput scaling law of the infrastructure-based coded multicasting
scheme, in the regime of large number of users and files in the library. This
shows that the spatial reuse gain of the D2D network is order-equivalent to the
coded multicasting gain of single base station transmission. It is therefore
natural to ask whether these two gains are cumulative, i.e.,if a D2D network
with both local communication (spatial reuse) and coded multicasting can
provide an improved scaling law. Somewhat counterintuitively, we show that
these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information
Theory, This is the extended version of the conference (ITW) paper
arXiv:1304.585
Enhancement of charged macromolecule capture by nanopores in a salt gradient
Nanopores spanning synthetic membranes have been used as key components in
proof-of-principle nanofluidic applications, particularly those involving
manipulation of biomolecules or sequencing of DNA. The only practical way of
manipulating charged macromolecules near nanopores is through a voltage
difference applied across the nanopore-spanning membrane. However, recent
experiments have shown that salt concentration gradients applied across
nanopores can also dramatically enhance charged particle capture from a low
concentration reservoir of charged molecules at one end of the nanopore. This
puzzling effect has hitherto eluded a physically consistent theoretical
explanation. Here, we propose an electrokinetic mechanism of this enhanced
capture that relies on the electrostatic potential near the pore mouth. For
long pores with diameter much greater than the local screening length, we
obtain accurate analytic expressions showing how salt gradients control the
local conductivity which can lead to increased local electrostatic potentials
and charged analyte capture rates. We also find that the attractive
electrostatic potential may be balanced by an outward, repulsive electroosmotic
flow (EOF) that can in certain cases conspire with the salt gradient to further
enhance the analyte capture rate.Comment: 10 pages, 6 Figure
Deep Exclusive Scattering and Generalized Parton Distributions : Experimental Review
Since the Generalized Parton Distribution theoretical framework was
introduced in the late 90's, a few published and numerous preliminary results
from Deep Exclusive Scattering (DES) have been extracted from non-dedicated
experiments at HERA and Jefferson Lab. We review most of these results, comment
on the ongoing dedicated research in this topic and conclude with the
expectations from the next generation of experiments in the near future.Comment: 10 pages, 8 figures, Baryons '04 proceeding
Noiseless coding for the magnetometer
Future unmanned space missions will continue to seek a full understanding of magnetic fields throughout the solar system. Severely constrained data rates during certain portions of these missions could limit the possible science return. This publication investigates the application of universal noiseless coding techniques to more efficiently represent magnetometer data without any loss in data integrity. Performance results indicated that compression factors of 2:1 to 6:1 can be expected. Feasibility for general deep space application was demonstrated by implementing a microprocessor breadboard coder/decoder using the Intel 8086 processor. The Comet Rendezvous Asteroid Flyby mission will incorporate these techniques in a buffer feedback, rate-controlled configuration. The characteristics of this system are discussed
- …