41 research outputs found

    Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl

    Get PDF
    Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient’s testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa. Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens

    Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl

    Get PDF
    Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient’s testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa. Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens

    DNA hypomethylation and aberrant expression of the human endogenous retrovirus ERVWE1/syncytin-1 in seminomas

    Get PDF
    Additional file 3: Figure S1. Expression analysis of ERVWE1 and ERVFRDE1 loci normalized to the TBP gene. Expression from the ERVWE1 (A, B) and ERVFRDE1 (C, D) loci was analyzed by qRT-PCR in the panel of tumor samples. Both the full-length RNA (A, C) and spliced mRNA (B, D) forms were quantified. All the data were normalized to the expression of TBP. Each sample is represented by a dot and was measured as a technical triplicate. In each column, median with interquartile range is depicted. Significance was assigned as follows: **** for P-values <0.0001, *** for P-values <0.001, ** for P-values <0.01, * for P-values <0.05

    Transcriptional provirus silencing as a crosstalk of de novo DNA methylation and epigenomic features at the integration site

    Get PDF
    The autonomous transcription of integrated retroviruses strongly depends on genetic and epigenetic effects of the chromatin at the site of integration. These effects are mostly suppressive and proviral activity can be finally silenced by mechanisms, such as DNA methylation and histone modifications. To address the role of the integration site at the whole-genome-scale, we performed clonal analysis of provirus silencing with an avian leucosis/sarcoma virus-based reporter vector and correlated the transcriptional silencing with the epigenomic landscape of respective integrations. We demonstrate efficient provirus silencing in human HCT116 cell line, which is strongly but not absolutely dependent on the de novo DNA methyltransferase activity, particularly of Dnmt3b. Proviruses integrated close to the transcription start sites of active genes into the regions enriched in H3K4 trimethylation display long-term stability of expression and are resistant to the transcriptional silencing after over-expression of Dnmt3a or Dnmt3b. In contrast, proviruses in the intergenic regions tend to spontaneous transcriptional silencing even in Dnmt3a−/− Dnmt3b−/− cells. The silencing of proviruses within genes is accompanied with DNA methylation of long terminal repeats, whereas silencing in intergenic regions is DNA methylation-independent. These findings indicate that the epigenomic features of integration sites are crucial for their permissivity to the proviral expression

    Jan Svoboda (1934–2017): sixty years with retroviruses

    No full text

    Jan Svoboda (1934–2017): sixty years with retroviruses

    No full text

    The Core Element of a CpG Island Protects Avian Sarcoma and Leukosis Virus-Derived Vectors from Transcriptional Silencing▿

    No full text
    Unmethylated CpG islands are known to keep adjacent promoters transcriptionally active. In the CpG island adjacent to the adenosine phosphoribosyltransferase gene, the protection against transcriptional silencing can be attributed to the short CpG-rich core element containing Sp1 binding sites. We report here the insertion of this CpG island core element, IE, into the long terminal repeat of a retroviral vector derived from Rous sarcoma virus, which normally suffers from progressive transcriptional silencing in mammalian cells. IE insertion into a specific position between enhancer and promoter sequences led to efficient protection of the integrated vector from silencing and gradual CpG methylation in rodent and human cells. Individual cell clones with IE-modified reporter vectors display high levels of reporter expression for a sustained period and without substantial variegation in the cell culture. The presence of Sp1 binding sites is important for the protective effect of IE, but at least some part of the entire antisilencing capacity is maintained in IE with mutated Sp1 sites. We suggest that this strategy of antisilencing protection by the CpG island core element may prove generally useful in retroviral vectors

    The Current View of Retroviruses as Seen from the Shoulders of a Giant

    No full text
    It has now been more than two years since we said our last goodbye to Jan Svoboda (14 [...

    Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin Close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors

    No full text
    Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture. The analysis of integration sites of long-term stably expressed proviruses shows a strong bias for some genomic features—especially integration close to the transcription start sites of active transcription units. Furthermore, complex analysis of histone modifications enriched at the site of integration points to the accumulation of proviruses of all three groups in gene regulatory segments, particularly close to the enhancer loci. We conclude that the proximity to active regulatory chromatin segments correlates with stable provirus expression in various retroviral species
    corecore