28 research outputs found

    A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes

    No full text
    There has been a growing interest in quantitative predictions of the intermolecular binding energy of large complexes. One of the most important quantum chemical techniques capable of such predictions is the domain-based local pair natural orbital (DLPNO) scheme for the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)], whose results are extrapolated to the complete basis set (CBS) limit. Here, the DLPNO-based focal-point method is devised with the aim of obtaining CBS-extrapolated values that are very close to their canonical CCSD(T)/CBS counterparts, and thus may serve for routinely checking a performance of less expensive computational methods, for example, those based on the density-functional theory (DFT). The efficacy of this method is demonstrated for several sets of noncovalent complexes with varying amounts of the electrostatics, induction, and dispersion contributions to binding (as revealed by accurate DFT-based symmetry-adapted perturbation theory (SAPT) calculations). It is shown that when applied to dimeric models of poly(3-hydroxybutyrate) chains in its two polymorphic forms, the DLPNO-CCSD(T) and DFT-SAPT computational schemes agree to within about 2 kJ/mol of an absolute value of the interaction energy. These computational schemes thus should be useful for a reliable description of factors leading to the enthalpic stabilization of extended systems

    Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State

    No full text
    The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (PW) DFT calculations have been carried out using two functionals in order to precisely characterize the structures and the 1H NMR chemical shielding tensors (CSTs) of the solid forms of maleic, malonic, and citric acids, and of L-histidine hydrochloride monohydrate. The level of agreement between the PW DFT and either SC or fast-MAS SSNMR 1H CSA data has been critically compared. It has been found that for the eigenvalues of the 1H CSTs provided by the fast-MAS measurements, an accuracy limit of current PW DFT predictions is about two ppm in terms of the standard deviation of the linear regression model, and sources of this error have been thoroughly discussed

    Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments

    No full text
    Most recently a renewed interest in several areas has arisen in factors governing the 1H NMR chemical shift (1H CS) of protons in aromatic systems. Therefore, it is important to describe how 1H CS values are affected by π-stacking intermolecular interactions. The parametrization of radial and angular dependences of the 1H CS is proposed, which is based on conventional gauge-independent atomic orbital (GIAO) calculations of explicit molecular fragments. Such a parametrization is exemplified for a benzene dimer with intermonomer vertical and horizontal distances which are in the range of values often found in crystals of organic compounds. Results obtained by the GIAO calculations combined with B3LYP and MP2 methods were compared, and revealed qualitatively the same trends in the 1H CS data. The parametrization was found to be quantitatively correct for the T-shaped benzene dimers, and its limitations were discussed. Parametrized 1H CS surfaces should become useful for providing additional restraints in the search of site-specific information through an analysis of structurally induced 1H CS changes

    Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors

    No full text
    Alamethicin (ALM) is an antimicrobial peptide that is frequently employed in studies of the mechanism of action of pore-forming molecules. Advanced techniques of solid-state NMR spectroscopy (SSNMR) are important in these studies, as they are capable of describing the alignment of helical peptides, such as ALM, in lipid bilayers. Here, it is demonstrated how an analysis of the SSNMR measurements can benefit from fully periodic calculations, which employ the plane-wave density-functional theory (PW DFT) of the solid-phase geometry and related spectral parameters of ALM. The PW DFT calculations are used to obtain the structure of desolvated crystalline ALM and predict the NMR chemical shift tensors (CSTs) of its nuclei. A variation in the CSTs of the amidic nitrogens and carbonyl carbons along the ALM backbone is evaluated and included in simulations of the orientation-dependent anisotropic 15N and 13C chemical shift components. In this way, the influence of the site-specific structural effects on the experimentally determined orientation of ALM is shown in models of cell membranes

    Exploring Accuracy Limits of Predictions of the <sup>1</sup>H NMR Chemical Shielding Anisotropy in the Solid State

    No full text
    The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (PW) DFT calculations have been carried out using two functionals in order to precisely characterize the structures and the 1H NMR chemical shielding tensors (CSTs) of the solid forms of maleic, malonic, and citric acids, and of L-histidine hydrochloride monohydrate. The level of agreement between the PW DFT and either SC or fast-MAS SSNMR 1H CSA data has been critically compared. It has been found that for the eigenvalues of the 1H CSTs provided by the fast-MAS measurements, an accuracy limit of current PW DFT predictions is about two ppm in terms of the standard deviation of the linear regression model, and sources of this error have been thoroughly discussed

    Polymorphic Forms of Valinomycin Investigated by NMR Crystallography

    No full text
    A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, H&alpha;) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms

    An ab Initio Study of Hydrogen Bonding Effects on the 15

    No full text

    A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems

    No full text
    The liquid state NMR chemical shift of protons is a parameter frequently used to characterize host–guest complexes. Its theoretical counterpart, that is, the 1H NMR chemical shielding affected by the solvent (1H CS), may provide important insights into spatial arrangements of supramolecular systems, and it can also be reliably obtained for challenging cases of an aggregation of aromatic and antiaromatic molecules in solution. This computational analysis is performed for the complex of coronene and an antiaromatic model compound in acetonitrile by employing the GIAO-B3LYP-PCM approach combined with a saturated basis set. Predicted 1H CS values are used to generate volumetric data, whose properties are thoroughly investigated. The 1H CS isosurface, corresponding to a value of the proton chemical shift taken from a previous experimental study, is described. The presence of the 1H CS isosurface should be taken into account in deriving structural information about supramolecular hosts and their encapsulation of small molecules
    corecore