457 research outputs found

    Research on Genetic Algorithm and Data Information based on Combined Framework for Nonlinear Functions Optimization

    Get PDF
    AbstractIn recent years, piecewise linear change has become an attractive tools, used for all kinds of complicated nonlinear system. Piecewise linear individual function to provide the platform segmental affine nonlinear system contains a large amount of counter approximate nonlinear function value. Even if section of linearization method widely used the best approximation of the nonlinear function of continuous time a minimum number of piecewise functions did not mention liveried with appropriate literature. This paper presents a method of optimization based on clustering evolution get optimal piecewise linear approximation of a class of nonlinear function. The technology is based on the balance between the approximate precision and simplified, and improves the approximate Linear A minimum number of department. The technology has been successfully applied in some common nonlinear function

    Axionlike-particle generation by laser-plasma interaction

    Full text link
    Axion, a hypothetical particle that is crucial to quantum chromodynamics and dark matter theory, has not yet been found in any experiment. With the improvement of laser technique, much stronger quasi-static electric and magnetic fields can be created in laboratory using laser-plasma interaction. In this article, we discuss the feasibility of axion or axionlike-particle's exploring experiments using planar and cylindrically symmetric laser-plasma fields as backgrounds while probing with an ultrafast superstrong optical laser or x-ray free-electron laser with high photon number. Compared to classical magnet design, the axion source in laser-plasma interaction trades the accumulating length for the source's interacting strength. Besides, a structured field in the plasma creates a tunable transverse profile of the interaction and improves the signal-noise ratio via the mechanisms such as phase-matching. The mass of axion discussed in this article ranges from 1 \textmu eV to 1 eV. Some simple schemes and estimations of axion production and probe's polarization rotation are given, which reveals the possibility of future laser-plasma axion source in laboratory.Comment: 24 pages, 5 figure

    Retraction notice to: “The Application of Symmetric Key Cryptographic Algorithms in Wireless Sensor Networks”

    Get PDF
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the Publisher.The authors have plagiarized a paper that had already appeared in “Queen's 25th Biennial Symposium on Communications”, page 168-172, print ISBN 978-1-4244-5709-0, http://dx.doi.org/10.1109/BSC.2010.5472979.One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process

    Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation

    Get PDF
    Both linear (alin) and rotational (arot) accelerations contribute to head impacts on the field in contact sports; however, they are often isolated in injury studies. It is critical to evaluate the feasibility of estimating brain responses using isolated instead of full degrees-of-freedom (DOFs) accelerations. In this study, we investigated the sensitivities of regional brain strain-related responses to resultant alin and arot as well as the relative contributions of these acceleration components to the responses via random sampling and linear regression using parameterized, triangulated head impacts with kinematic variable values based on on-field measurements. Two independently established and validated finite element models of the human head were employed to evaluate model consistency and dependency in results: the Dartmouth Head Injury Model (DHIM) and Simulated Injury Monitor (SIMon). For the majority of the brain, volume-weighted regional peak strain, strain rate, and von Mises stress accumulated from the simulation significantly correlated to the product of the magnitude and duration of arot, or effectively, the rotational velocity, but not to alin. Responses from arot-only were comparable to the full-DOFs counterparts especially when normalized by injury-causing thresholds (e.g., volume fractions of large differences virtually diminished (i.e., <1%) at typical difference percentage levels of 1–4% on average). These model-consistent results support the inclusion of both rotational acceleration magnitude and duration into kinematics-based injury metrics, and demonstrate the feasibility of estimating strain-related responses from isolated arot for analyses of strain-induced injury relevant to contact sports without significant loss of accuracy, especially for the cerebrum
    • …
    corecore