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Abstract

Both linear (alin) and rotational (arot) accelerations contribute to head impacts on the field in 

contact sports; however, they are often isolated in injury studies. It is critical to evaluate the 

feasibility of estimating brain responses using isolated instead of full degrees-of-freedom (DOFs) 

accelerations. In this study, we investigated the sensitivities of regional brain strain-related 

responses to resultant alin and arot as well as the relative contributions of these acceleration 

components to the responses via random sampling and linear regression using parameterized, 

triangulated head impacts with kinematic variable values based on on-field measurements. Two 

independently established and validated finite element models of the human head were employed 

to evaluate model consistency and dependency in results: the Dartmouth Head Injury Model 

(DHIM) and Simulated Injury Monitor (SIMon). For the majority of the brain, volume-weighted 

regional peak strain, strain rate, and von Mises stress accumulated from the simulation 

significantly correlated to the product of the magnitude and duration of arot, or effectively, the 

rotational velocity, but not to alin. Responses from arot-only were comparable to the full-DOFs 

counterparts especially when normalized by injury-causing thresholds (e.g., volume fractions of 

large differences virtually diminished (i.e., <1%) at typical difference percentage levels of 1–4% 

on average). These model-consistent results support the inclusion of both rotational acceleration 

magnitude and duration into kinematics-based injury metrics, and demonstrate the feasibility of 

estimating strain-related responses from isolated arot for analyses of strain-induced injury relevant 

to contact sports without significant loss of accuracy, especially for the cerebrum.
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1. Introduction

Sports-related concussion is a major public health problem in the United States estimated to 

occur in 1.6–3.8 million individuals annually (CDC 2003). Despite the significance and 

growing concerns about its potential long-term consequences, the biomechanical 

mechanisms of concussion remain elusive. Initial efforts used the head injury criterion (HIC) 

to assess the risk of skull fracture and severe traumatic brain injury (TBI) and included 

linear but not rotational acceleration. Therefore, its use as an injury metric for sports 

concussion has been controversial because many believe rotational acceleration to be a 

primary mechanism for diffuse brain injury (DAI), including loss of consciousness and 

concussion (King et al., 2003). Consequently, more recent injury metrics typically include 

rotational accelerations, including, e.g., a generalized acceleration model for brain injury 

threshold (GAMBIT; Newman et al., 1986), head impact power (HIP; Newman et al., 2000), 

and the HIT severity profile (HITsp; Greenwald et al., 2008). Notably, injury metrics such as 

the Brain Injury Criterion (BRIC; Takhounts et al., 2011), the Rotational Injury Criterion 

(RIC) and Power Rotational Head Injury Criterion (PRHIC) based on the HIC and HIP 

counterparts, respectively (Kimpara and Iwamoto 2012), are solely composed of rotational 

components from the six degrees-of-freedom (DOFs) head impact. These efforts are in-line 

with the work by Rowson and colleagues who investigated the rotational head kinematics as 

an injury risk function in football (Rowson et al., 2012), while later they extended their work 

by combining both linear and rotational kinematics to assess the probability of concussion 

(Rowson and Duma, 2013).

To date, however, no consensus has been reached on an appropriate injury metric or a 

tolerance threshold for sports-related concussion. In part, this may be because kinematics-

based injury measures, alone, do not provide the region-specific tissue-level mechanical 

responses of the brain that are presumed to be directly responsible for initiating the injury. 

To bridge the gap between macro-scale kinematic measures and micro-scale injury findings 

describing injury-causing mechanical loading environment (Bain and Meaney 2002; 

Morrison et al., 2011), finite element (FE) models of the human head are playing an 

increasingly important role in simulating brain responses subjected to external impact (Yang 

et al., 2011). Using model-estimated brain responses, different research groups have 

attempted to establish a concussion threshold based on regional brain mechanical responses 

from analyses of reconstructed NFL football impacts (Zhang et al., 2004; Kleiven 2007; 

Marjoux et al., 2008), pedestrian (Marjoux et al., 2008) and motorcycle (Willinger and 

Baumgartner, 2003; Marjoux et al., 2008) accidents, and instrumented helmets from 

collegiate football players (Takhounts et al., 2008). Our recent work evaluating model-

estimated brain responses for a group of athletes diagnosed with concussion based on on-

field head impacts measured with the HIT system (Greenwald et al., 2008; Crisco et al., 

2010) also showed promise in relating regional brain responses to longitudinal changes in 

neuroimaging parameters (McAllister et al., 2012).

Besides simulating real-world impacts, head FE models have also been used to 

parametrically investigate the significance of kinematic characteristics on brain responses. 

Weaver et al., 2012 employed the Simulated Injury Monitor (SIMon; Takhounts 2008) to 

assess the influence of direction and magnitude of rotational velocity on regional brain 
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responses via cumulative strain damage measure (CSDM). Yoganandan et al., 2008 

employed a 2D FE model to study the influence of rotational acceleration–deceleration pulse 

shapes on brain strain responses. They found nearly the same regional peak strains with 

monophasic acceleration or deceleration pulses, suggesting rotational velocity is a better 

injury metric than peak magnitude of rotational acceleration, which agrees with other 

findings based on linear regression analyses (Zhang et al., 2004; Kleiven 2007; Takhounts et 

al., 2008). However, when biphasic impulses were used, peak strains were region- and pulse-

shape specific. Kleiven (2006) also evaluated the significance of global kinematics of linear 

and rotational accelerations on strain and reported a peak value of up to 1.5–3% maximum 

principal strain in the fringe plot when the head was subjected to linear acceleration alone. 

This finding was in concert with that from Zhang et al., 2006 who reported <2% maximum 

principal strain from linear acceleration alone while rotational acceleration was responsible 

for the majority of strain based on results from four individual elements in one lateral head 

impact simulation. The relatively insignificant strain from linear acceleration alone, 

however, was in sharp contrast to that reported in Post et al. (2012) in which regional 

maximum principal strains induced by linear acceleration was comparable to and often 

higher than those induced by rotational acceleration, for three acceleration pulse shapes 

applied in three major axes.

Most of these parametric studies isolate linear (alin) and rotational (arot) accelerations and 

report their significance independently. In addition, many studies analyzing real-world injury 

cases also employ isolated acceleration peak magnitudes to assess the risk of concussion 

(Zhang et al., 2004; Kleiven 2007; Takhounts et al., 2008; Beckwith et al., 2013; Rowson 

and Duma 2013). However, both alin and arot contribute to head impact kinematics on the 

field (Rowson et al., 2011). It is critical, therefore, to evaluate the feasibility of estimating 

regional brain responses that are presumably responsible for initiating the injury using 

isolated instead of full degrees-of-freedom (DOFs) head impacts (i.e., both alin and arot). 

Using laboratory-reconstructed (Pellman et al., 2003; Zhang 2004; Kleiven 2007), measured 

(Takhounts 2008), and simulated (Ji et al., 2013a) head impacts as biomechanical inputs to 

head FE models, studies have shown that alin and arot are correlated to intracranial pressure 

and strain responses, respectively. To date, however, there has not been a systematic study of 

the relative contributions of these acceleration components to brain responses. In this study, 

we parametrically investigate the sensitivities of regional strain-related responses to 

kinematic variables of alin and arot, and further quantify the relative contributions of these 

acceleration components to brain responses. These efforts are based on two independently 

established and validated FE models of the human head in order to evaluate model-

consistency or any dependency in results. Findings from this study may provide important 

new insights on the biomechanical basis of sports-related concussion.

2. Methods

Conceptually, a head FE model is simply a mathematical function mapping impact 

kinematic input variables into regional brain response output parameters. The model-specific 

function is composed of the material properties of various intracranial components, 

interfacial boundary conditions, meshes, element formulations, and numerical simulation 

solver, etc. Because FE simulations are deterministic (i.e., a given set of input parameters 
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leads to a unique output response), a random sampling technique with linear regression is 

readily applicable to analyze the sensitivity of output responses to head kinematic input 

parameters (Hamby 1994). In order to verify findings across models, two independently 

established and validated head FE models were employed in this study: the Dartmouth Head 

Injury Model (DHIM (Ji et al., 2013b); substantially improved over the previous version 

(McAllister et al., 2011; Ji et al., 2013a) and the SIMon (Takhounts et al. 2008); Fig. 1). A 

detailed description of the methodology for developing the DHIM was reported previously 

(Zhao et al., 2012). Briefly, the DHIM was constructed based on high-resolution MRI of a 

concussed athlete, and its validation against brain-skull displacement data from cadaveric 

head impacts was categorized as “good” or nearly “excellent” (Ji et al., 2013b) according to 

a fidelity rating (de Lange et al., 2005). For completeness, description of DHIM and its 

validation results are summarized in the Appendix. The SIMon was developed based on CT 

images of a single male individual with the head size close to that of 50th percentile male. Its 

validation against relative brain-skull displacements and pressure measured from cadaveric 

impacts was previously reported (Takhounts et al. 2008). A hyperelastic material model 

identical to the “average” model in Kleiven 2007 was used in DHIM, while a viscoelastic 

material model was adopted in SIMon. In total, the DHIM consists of 101.4 k nodes and 

115.2 k elements (56.6 k nodes and 55.1 k elements) with a combined mass of 4.562 kg 

(1.436 kg) for the whole head (brain). By comparison, the SIMon consists of 42.5 k nodes 

and 45.9 k elements (33.4 k nodes and 30.1 k elements) with a combined mass of 4.506 kg 

(1.480 kg) for the whole model (brain).

2.1 Generation of Head Impact Kinematics

Triangulated alin and arot impulses were independently created to generate head impact 

kinematics. The magnitude of each acceleration component was determined from two 

independent variables: the peak magnitude (  and ) and impulse duration (Δtlin and 

Δtrot). Two additional variables, azimuth (θ) and elevation (α) angles, were used to 

determine the directionality of the translational and rotational axes ([θlin, αlin] and [θrot, 

αrot], respectively; Ji et al., 2013a). The ranges for  and  were based on the 50th and 

99th percentile peak acceleration magnitudes in on-field ice-hockey (Ji et al., 2013a), which 

were comparable to the on-field measurements in youth, high school and collegiate football 

(Rowson et al., 2009; Rowson et al., 2012; Daniel et al., 2012). The impulse durations were 

based on temporal characteristics of high school football on-field measurements (mean plus 

and minus twice the standard deviation according to the reported 10±3 ms impact duration 

on average; Broglio et al., 2010), which encompassed the average impact duration of 14 ms 

reported in collegiate football (Rowson et al., 2009). No restriction was imposed on the 

directionality of the translational or rotational axis (Table 1). The peak magnitudes and 

impulse durations were randomly and independently generated within their respective ranges 

following a uniform distribution, while the pair of θ and α angles were independently 

generated such that their corresponding translational or rotational axis randomly and 

uniformly sampled the 3D space (i.e., instead of uniform distributions for each individual θ 
and α parameter; Fig. 2a and b). A unique head impact condition was then determined by 

combining each input variable with its value randomly selected from the corresponding pool 

(Fig. 2c). A total of 100 (N=100) head impact conditions were created to provide 
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acceleration impulses for model input. For each impulse, a total of 40 ms time-varying 

acceleration profile was created that included the acceleration impulse followed by a 

“holding” period to maintain a constant velocity (i.e., to ensure that the brain peak response 

was reached which typically lagged behind the peak of acceleration impulse; Fig. 2d).

2.2 Sensitivities of regional brain strain-related responses to alin and arot

Kinematic motion of the rigid skull was prescribed according to each impact condition 

through the head center of gravity using either DHIM or SIMon. Values of strain-related 

mechanical variables including the maximum principal engineering strain (ε), its rate (ε̇), 
and von Mises stress (σ) were extracted for each element at every temporal point (temporal 

resolution of 1 ms). The output variables used for data analyses were defined based on their 

element-wise peak values during the entire simulation regardless of the time of occurrence 

(analogous to the cumulative strain damage measure (CSDM) derived from “accumulated” 

peak responses; Takhounts et al., 2008), and were denoted by εp, ε̇p, and σp, respectively. 

Volume-weighted regional averages of these output variables for the whole-brain, cerebrum, 

cerebellum, and brainstem were obtained as dependent variables. By comparison, the 

independent variables included the individual parameters used to create the acceleration 

impulses (i.e., , Δtlin, , and Δtrot) as well as their respective interaction terms, 

 and , or effectively, their respective linear and rotational velocities, 

νlin and νrot. Because the focus of our study is to examine the sensitivity of strain-related 

responses to alin and arot, the θ and α angles characterizing the translational and rotational 

axes were clustered. A linear regression for each regional output variable (three variables in 

four ROIs) was performed based on the 100 impact simulation results from each head FE 

model. An additional linear regression was performed using νrot as the single independent 

variable, and their performances were compared in terms of coefficients of determination 

(R2). Finally, Pearson correlation was performed between the two FE models to assess the 

similarity in their responses relative to head impacts.

2.3 Relative contributions of alin and arot to regional brain strain-related responses

To further quantify the relative contributions of each acceleration component, two additional 

simulations were performed for each impact condition using either alin or arot only while 

setting the other acceleration component to zero. For each impact condition, accumulated 

peak responses from alin- or arot-only (i.e.,  and  for εp obtained from alin- or arot-

only, respectively; definitions for ε̇ and σ were analogous) were compared with and further 

normalized by their full-DOFs counterparts (i.e., ) for each element. Because the 

resulting normalized, element-wise differences constituted a spatial distribution, we reported 

the volume fractions above a range of percentage differences (thresh, varied from 0 to 100%) 

instead of a single value (e.g., volume-weighted average of the percentage differences) to 

characterize their response differences. Effectively, the reported volume fraction was 

analogous to an accumulated histogram at each threshold level. Volume fractions at each 

difference percentage level were obtained for all impact conditions to compute an average 

and a range for each regional response variable from the two FE models. To identify 

locations where large differences (e.g., >10%) were most likely to occur between responses 
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from arot-only and full-DOFs, the qualifying elements were identified for each impact, and 

an accumulated score was obtained from all the impact simulations.

The normalized differences relative to the full-DOFs counterparts, however, did not 

necessarily reflect any clinical significance relative to mechanical thresholds that could 

potentially cause injury (e.g., the relative difference could be large in percentage, but the 

absolute magnitude of difference may not be clinically relevant). Therefore, to further 

evaluate the clinical feasibility of estimating strain-related responses using arot-only, we also 

reported the response differences relative to injury-causing thresholds drawn from an in vivo 
animal study for ε (optimal threshold of 0.18; Bain and Meaney, 2000) and FE-based 

analyses of real-world injury cases for ε̇ and σ (48.5 s−1 and 8.4 kPa, respectively; Kleiven 

2007). These threshold values are similar to reports in other studies (e.g., 0.19 for ε in the 

grey matter (Zhang et al., 2004), 0.21 (0.26) for ε in the corpus callosum (grey matter; 

Kleiven 2007), and 7.8 kPa for σ in the brainstem (Zhang et al., 2004)). Analogously, 

element-wise incidence frequencies of large differences relative to these injury-causing 

thresholds were also reported.

2.4 Data analysis

Computational simulations for DHIM and SIMon were conducted in Abaqus/Explicit 

(Version 6.12; Dassault Systèmes, France) and LS-DYNA (Livermore Software Technology 

Corp., Livermore, CA), respectively, on a multi-core Linux cluster (Intel Xeon X5560, 2.80 

GHz, 126 GB memory). All data analyses were performed in MATLAB (R2013a; 

Mathworks, Natick, MA). Statistical significance was reached when the p-value was <0.05.

3. Results

Linear regression results are given in Table 2. For the majority of the brain, volume-

weighted peak response averages significantly correlated to , or effectively, νrot, 

regardless of the FE model used, although the results were not consistent in the brainstem. 

None of the responses was significantly correlated to any linear acceleration component. The 

resulting R2 values ranged 0.841–0.957 for the whole-brain, cerebrum, and cerebellum, with 

slightly lower values for the brainstem (range 0.678–0.898). When using νrot as the single 

independent variable, all corresponding coefficients were significant and the resulting R2 

values only slightly decreased (by 4.6±5.1% on average and range 0.3–19.5%), especially 

for εp (by 1.8±2.7% on average and range 0.3–7.4%). Consistent and significant correlations 

existed between the two FE models for all regional responses (majority of the Pearson 

correlation coefficients were above 0.8 except for εp and ε̇p in the brainstem; Table 2).

Using isolated responses from alin- or arot-only, volume fractions with response differences 

exceeding a range of percentage levels are shown in Fig. 3. Responses from alin-only were 

dramatically different from the full-DOFs counterparts for both models (e.g., more than 95% 

of the volume experienced differences greater than 80% relative to  on average for the 

whole-brain and cerebrum). In contrast, the volume factions for arot-only virtually 

diminished (i.e., when the volume fraction became <1%) when the difference percentage 

level were above 10–20% on average for the whole-brain and cerebrum. The incidence 
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frequency map clearly indicated that large differences (i.e., >10%) mostly occurred in the 

inferior region of the brain (i.e., brainstem for DHIM and brainstem and cerebellum for 

SIMon; Fig. 4a–d).

When the element-wise differences were normalized by injury-causing thresholds instead 

(Fig. 5), the volume fractions virtually diminished at a difference percentage level of 1–4% 

on average regardless of the response variable or FE model used, although a larger level of 

10% was found for SIMon-estimated ε̇p. From all simulations, the largest difference levels 

when the volume fractions virtually diminished were 5%, 15%, and 2% (7%, 20%, and 6%) 

for εp, ε̇p and σp, respectively, for DHIM (SIMon). Similarly, large differences mostly 

occurred in the brainstem (a 5% instead of 10% difference percentage level was used here to 

improve visualization; Fig. 4e–h).

A representative impact condition was chosen (Fig. 2c) to visually compare the magnitude 

and distribution of instantaneous ε and accumulated εp generated from full-DOFs as well as 

from arot- and alin-only for the two FE models (Fig. 6). For each model, ε (when its average 

for the whole-brain reached its peak) and εp from arot-only were virtually identical to the 

full-DOFs counterparts. In contrast, the corresponding ε and εp from alin-only were 

negligible. The time histories of the average regional strain-related responses (spatially 

averaged at each time point) are shown in Fig. 7, which clearly indicated virtually identical 

magnitude and temporal trend between responses generated from arot-only and full-DOFs, 

with little responses from alin-only (except perhaps in the brainstem), regardless of the head 

FE model used.

4. Discussion and Conclusion

Both linear (alin) and rotational (arot) accelerations contribute to head impact kinematics on 

the field in real-world contact sports. However, the two acceleration components are 

frequently isolated in injury studies. It is critical, therefore, to evaluate the feasibility of 

estimating brain responses using isolated instead of full DOFs kinematics for analysis of 

real-world injury. In this study, we investigated the sensitivities of regional brain strain-

related responses to kinematic variables of alin and arot, and further quantified the relative 

contributions of these acceleration components to brain responses. Using a random sampling 

and linear regression technique with parameterized head impacts generated from on-field 

data relevant to contact sports, we found that volume-weighted regional averages of εp, εṗ, 

and σp significantly correlated to arot, but not to alin, for both head FE models employed. 

While these findings agree well with previous reports (Zhang et al. 2004; Kleiven 2007; 

Takhounts et al., 2008; Ji et al., 2013a), our results further indicate that these strain-related 

responses significantly correlated to the product of the magnitude and duration of arot 

(instead of independently to either of them), or effectively, the rotational velocity, νrot, for 

the majority of the brain for both head FE models (Table 2). Because the resulting R2 values 

were typically high (mostly >0.85) and only slightly decreased when regressing with νrot–

only for the majority of regional brain responses (e.g., by 1.8±2.7% for εp), our results 

suggest that it is feasible to correlate strain-related responses directly with νrot-only for 

practical applications. These findings based on simulated head impacts randomly and 

uniformly sampling the input parametric space were consistent with prior observations 
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(Kleiven 2007; Yoganadan et al., 2008; Takhounts et al. 2008). From the perspective of 

dimensional analysis, such a finding may hardly be surprising because the converted brain 

strain energy due to deformation is likely proportional to the input rotational kinetic energy. 

Since the two energy terms are proportional to the square of strain and rotational velocity, 

respectively (Knudson, 2007), a linear relationship between strain and rotational velocity 

would incur. Regardless, because of the significant interaction between the peak magnitude 

and duration of arot, it is important to combine both kinematic variables instead of using 

peak magnitude of arot alone to evaluate regional brain strain levels, which is in concert with 

recent efforts of deriving kinematics-based metrics for assessing the risk of strain-induced 

injury (Takhounts et al., 2011; Kimpara and Iwamoto 2012).

More importantly, we have further quantified that alin, alone, generated little strain-related 

responses for the majority of the brain (Fig. 3). This finding confirms that HIC that only 

includes alin but not arot is likely irrelevant to strain-induced injury (correlation coefficients 

between the HIC values and the whole-brain  insignificant for both DHIM and SIMon; 

p>0.9), albeit recognizing that on-field alin and arot measurements may be correlated while 

they were independently generated and thus, uncorrelated in this study. In contrast, arot, 

alone, produced the majority of responses compared to the full-DOFs counterparts 

especially for the DHIM as their volume fractions based on element-wise differences 

virtually diminished (i.e., when the volume fraction became less than 1%) at a difference 

percentage level of ~10%, 20%, and 10% for εp, εṗ, and σp, respectively, on average (Fig. 

3). Although larger element-wise relative differences existed for SIMon, much smaller 

differences were found when compared with injury-causing thresholds for both models (the 

volume fractions diminished at a difference percentage level of 1–4% for all of the three 

variables regardless of the model used, except for a larger level of ~10% for SIMon-

estimated ε̇p; Fig. 5). This observation indicated that the element-wise absolute differences 

were mostly of low magnitudes. Most of the large differences occurred in the inferior region 

of the brain for both models, especially in the brainstem, although for SIMon, the occurrence 

frequency was much lower than DHIM when normalized by the injury-causing thresholds 

(Fig. 4). Such a consistent observation suggests that alin does influence brain strain-related 

responses in the inferior region, and that the differences between arot-only and full-DOFs are 

not likely to be related to the directionality of loading axes which were randomly generated 

in this study. The near-identical responses from arot-only relative to the full-DOFs 

counterparts were evident when comparing their instantaneous and accumulated spatial 

distributions (shown only for ε; Fig. 6) as well as regional averages over time (Fig. 7) for a 

selected case. These results suggest the feasibility of using isolated arot instead of full-DOFs 

to estimate regional strain levels and consequently, to assess the risk of strain-induced brain 

injury without significant loss of accuracy, especially for the cerebrum.

These finding were consistent for the two independently established and validated head FE 

models. The level of model-consistency in response trend relative to impact kinematics was 

high as the correlation coefficients between regional responses estimated from the two 

models were strong (e.g., ranged 0.922–0.963 for the cerebrum) and significant (p<0.0001; 

Table 2). Model-consistency in response trend was also apparent when comparing the 

regional average responses over time for one selected case (Fig. 7). However, model-
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dependency in response distribution (Fig. 6) and magnitude was also obvious because the 

DHIM-estimated peak value of ε (σ) was 9.7% (13.2%) higher (lower) than the SIMon 

counterpart for the cerebrum for the same case. Although the overall contributions of 

isolated alin were insignificant, the relative contributions seemed to be model dependent as 

well (e.g., higher for ε̇ in the brainstem for DHIM, while higher for σ in the cerebrum and 

cerebellum for SIMon which was negligible for DHIM; Fig. 7). Most of the large element-

wise differences occurred in the brainstem (Fig. 7), where lower Pearson correlation 

coefficients were observed, especially for εp (Table 2). These model-dependencies were 

likely a result of differences in model features (e.g., details of how the brainstem region was 

modeled) and parameters (in particular, material properties of the brain; van Dommelen et 

al., 2010) as discussed recently (Ji et al., 2013a).

The ability to isolate strain-related responses from arot-only was likely a direct result of the 

brain’s (near) incompressibility due to its high water content (bulk modulus of the brain was 

0.219 GPa and 0.558 GPa for DHIM and SIMon, respectively). When the brain is confined 

within a rigid skull with low or moderate alin (e.g., <100 g) applied, little volumetric change 

is possible to generate any significant strain. To verify this, we parametrically varied the 

brain’s bulk modulus in DHIM across 6-orders of magnitude and repeated the same impact 

simulations in Figs. 6 and 7 using arot-only, alin-only, and with full-DOFs. When the bulk 

modulus was above 0.0219 GPa, arot dominated the strain responses as  was nearly 

identical to , with negligible  (Fig. 8). With lower bulk modulus values, however, alin 

became increasingly dominant. Because most head FE models adopted for TBI studies 

employ an even higher bulk modulus for the brain (i.e., 2.19 GPa; Zhang et al., 2004; 

Kimpara et al., 2006; Cloots et al., 2011; Wright and Ramesh 2012; Mao et al., 2013; etc.), 

we anticipate similar findings likely to occur when a different head FE model is employed 

(e.g., the first version of SIMon (Takhounts et al., 2003) employed in Zhang et al, 2006, and 

the model in Kleiven 2006).

Our finding that isolated alin generated negligible strain for the majority of the brain agreed 

well with the report of <2% of ε in four individual elements from alin-only based on one 

lateral impact (Zhang et al., 2006). Similarly, Kleiven 2006 also reported up to 1.5–3% of ε 
in the fringe plots when the head was subjected to alin-only in three major axes, which was 

confirmed by repeating the same simulation (  of 80 g and Δtlin of 5 ms) using both 

DHIM and SIMon in our study. However, these results were in sharp contrast to that in Post 

et al. 2012 who reported ε values induced by alin-only (up to 13.6%) comparable to or often 

larger than that generated from arot-only. The seemingly contradictory finding was likely, in 

part, because of a different strain measure used in their study. Instead of using a volume-

weighted regional average to characterize the response for a specific ROI, the maximum ε 
value regardless of the location or the time of occurrence from a single individual element 

(εm) was used in Post et al., 2012, which was analogous to that employed in the Wayne State 

University Head Injury Model (although an average value together with five neighboring 

elements was used in the latter; Ji et al., 2013a). Because a single maximum value from an 

individual element could be sensitive to mesh quality, a volume-weighted, accumulated peak 

response may be more representative of a regional response for a given ROI. Regardless, by 

repeating a selected simulation with alin-only ( , Δtlin=5 ms; identical to curve B 
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along the x-axis in Post et al., 2012), we found that volume-weighted εp responses continued 

to be negligible (<1.2%) using either DHIM or SIMon. By comparison, DHIM reported εm 

values of 2.6% and 1.8% in the grey and white matter, respectively, while SIMon reported a 

εm value of 4.8% in the cerebrum (no grey/white matter differentiation in SIMon). However, 

these values were still much lower than the reported values of 13.6% and 13.1% in the grey 

and white matter, respectively, in Post et al., 2012. These comparisons suggest further 

significant differences exist between the head FE model used in Post et al., 2012 and DHIM/

SIMon (e.g., possibly material properties of the brain and/or mesh resolution, etc.). 

Nevertheless, in addition to differences in head FE model features and parameters, it is 

important for researchers to recognize inconsistencies in response measures as well when 

comparing simulation results among different studies in the future in order to facilitate the 

exchange of model estimation results.

There are other important considerations to note regarding our results. Because the head 

impact conditions used in this study were constrained within the ranges relevant to contact 

sports and did not necessarily encompass the full spectrum of head impacts, it is important 

not to extend the applicability of our findings to higher levels of impact severities without 

further investigation (although repeating a simulation in Post et al., 2012 with  of 150 g 

still yielded the same finding). However, since the head impact conditions generated in this 

study are rather general and not necessarily limited to sports-related head impacts, we 

anticipate that similar results and conclusions would also apply to other mild traumatic brain 

injury scenarios (e.g., traffic accidents) as long as the acceleration levels are in the same 

mild range as evaluated in this study. On the other hand, because we have employed 

parameterized instead of actual on-field head impacts as model inputs, we were able to 

simplify impact kinematics and to identify those variables important to brain responses. 

However, further investigation is necessary to verify whether our findings based on 

triangulated impulses can be extended to other types of rotational impulses. The random 

sampling technique also enabled us to statistically probe the head FE model input-output 

relationship without a brute-force enumeration in impact conditions (Weaver et al., 2012; Ji 

et al., 2013a) that could lead to a high dimensional input matrix and consequently, 

potentially excessive amount of computations. The statistical power with the 100 random 

sampling seemed sufficiently high, as similar results were obtained by halving the number of 

samplings. Because the kinematic variables were generated randomly and independently 

with no restriction imposed on the directionality of alin and arot, the resulting head 

kinematics may contain “inadmissible” head impacts not likely to occur in the real world 

(e.g., both translation along and rotation about the vertical axis). Further, the uniform 

distributions of the head impact kinematic variables did not reflect the distribution of on-

field measurements which is typically skewed in peak magnitude (Rowson et al., 2009, 

Broglio et al., 2010; Broglio et al., 2012; Breedlove et al., 2012) and asymmetric in impact 

location (Breedlove 2012).

Another important limitation with our study is that we have simplified the head impacts into 

monophasic acceleration impulses but did not consider deceleration that would always occur 

in the real world (otherwise an unbounded head motion would incur, which is non-physical). 

A recent parametric study using a 2D FE model (Yoga et al., 2008) suggests up to 50% 
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reduction in strain when the acceleration was immediately followed by a deceleration phase, 

and the differences diminished when the interval between the two phases were above 25 ms. 

These results indicate that brain responses could be sensitive to secondary acceleration/

deceleration peaks as well. For the one selected case in this study, a secondary peak response 

of ε in the cerebrum was present with DHIM (around 38 ms; see arrow in Fig. 7), but was 

lacking or less evident with SIMon (although both models predicted a secondary peak 

response of σ in the same region). Such response differences in time may indicate that the 

significance of the deceleration phase could be model-dependent (likely due to the disparity 

in the material properties of the brain). Because of the observed reduction in strain, the 

single monophasic acceleration pulse likely provided an upper bound of regional brain strain 

responses, which could have an important implication when assessing the risk of strain-

induced concussion. Regardless, further investigation using a realistic, validated 3D (as 

opposed to 2D) head FE model is warranted to study the sensitivity of regional brain 

responses to arot pulse shapes in order to evaluate whether the response level can be solely 

characterized by a single major peak of arot.

Finally, we have only evaluated regional strain-related responses but not pressure response in 

this study because the validation results for DHIM against pressure measurements from 

cadaveric head impacts (Nahum et al., 1997; Trossellie et al., 1992) are not available yet. As 

indicated in previous studies (Zhang et al. 2004; Kleiven 2007; Takhounts et al., 2008; Ji et 

al., 2013a), brain pressure response is likely dominated by alin. However, a quantitative 

investigation on the sensitivity of pressure to resultant alin and arot is necessary to elucidate 

the relative contributions of these acceleration components in order to assess whether 

pressure can be estimated from isolated alin alone without significant loss of accuracy, 

similarly to the strain-related responses evaluated in this study. These systematic studies to 

quantify the relative contributions of alin and arot to regional brain responses are critical to 

permit response estimation using reduced instead of full DOFs of head impact kinematics 

without significant loss of accuracy. They would establish a solid and much-needed 

foundation to establish a pre-computed model response atlas or a look-up-table that could 

allow impact simulation via an efficient “interpolation” (within seconds) instead of a direct 

simulation (typically requires hours of computational cost on a modern multi-core computer 

or even a super computer), which is only feasible with a substantial reduction in the 

dimensionality of input parametric space. If successful, such a pre-computation strategy 

could dramatically improve the throughput in head impact simulation, thereby enabling a 

model-based study on the cumulative effects of repetitive head impacts (each athlete 

typically sustains hundreds of head impacts in a single play season) on the risk of sports-

related concussion, which has drawn growing and considerable interest in the research 

community as well as the general public alike. These investigations will be the subjects of 

future publications.

To conclude, using a random sampling technique with linear regression, we found that 

regional brain strain-related responses significantly correlated to the product of the 

magnitude and duration of the rotational acceleration component (instead of independently 

to either variable), or effectively, the rotational velocity, but not to linear acceleration. These 

findings suggest that it is necessary to incorporate both rotational impact magnitude and 
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duration into kinematics-based metrics to assess regional brain strain levels and 

consequently, the risk of strain-induced injury. In addition, the strain-related responses 

estimated from arot-only were comparable to the full-DOFs counterparts for the majority of 

the brain especially when normalized by injury-causing thresholds derived from real-world 

injury studies (volume fractions virtually diminished (i.e., <1%) at typical difference 

percentage levels of 1–4% on average), suggesting the feasibility of using strain-related 

responses from isolated arot for analysis of strain-induced injury in contact sports without 

significant loss of accuracy, especially for the cerebrum. These findings consistently found 

from two independently established and validated head FE models may provide important 

new insights on the biomechanical basis of sports-related concussion to permit establishment 

of a pre-computed model response atlas that could substantially improve the throughput in 

head impact simulation.
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Appendix: Description of the Dartmouth Head Injury Model and its 

validation

Briefly, the Dartmouth Head Injury Model (DHIM) was created based on a template high-

resolution T1-weighted MRI of an athlete clinically diagnosed with concussion whose head 
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was positioned neutrally without tilting in MRI. The methodology of model creation was 

described in detail in (Zhao et al., 2012). All solid (surface) parts were represented by 

hexahedral (quadrilateral) elements. A reduced integration with hourglass control was used 

(hourglass energy typically 5–8% of internal energy), and all anatomical interfaces were 

modeled as sharing nodes (Takhounts et al., 2008). Because of the soft CSF layer between 

the brain surface and all of its surrounding structures (falx, tentorium, dura), interfacial 

sliding of the brain was possible. The material properties of the brain were identical to the 

“average model” in Kleiven 2007, and were reported in (Ji et al., 2013b) along with the 

material properties for other components. In total, the model contains 101420 nodes and 

115228 elements with a combined mass of 4.562 kg for the head, and 56632 nodes and 

55062 elements with a combined mass of 1.436 kg for the brain.

The DHIM was validated against brain-skull relative displacements measured in three 

representative cadaveric head impacts (frontal (C383-T1), occipital (C755-T2), and parietal 

(C394-T4); Hardy et al., 2001, 2007; model was scaled to match the reported cadaveric head 

dimension when possible). The performance was quantified in terms of correlation score 

(Kimpara et al., 2006) and correlation coefficient (Kleiven 2006). The average correlation 

score for DHIM was 83.37 (see Table A1), which was comparable to that of Total HUman 

Model for Safety (THUMS; average score of 85.52; Kimpara et al., 2006). Both models 

were categorized as “good” or nearly “excellent” according to a fidelity rating (de Lange et 

al., 2005). In addition, the validation performance of DHIM was also comparable to that in 

Kleiven 2006 in terms of average correlation coefficient (0.84 and 0.73 vs. 0.63 and 0.78 for 

the frontal and occipital impact, respectively). Comparison between model-estimated brain 

responses and the measurements are given in Figs. A1–A3 (results for the parietal impact 

only available for DHIM).

Table A1

Summary of model validation performances of the DHIM and THUMS against brain-skull 

relative displacements measured from representative cadaveric head impacts in terms of 

correlation score in phase, amplitude, and shape (Kimpara et al., 2006).

C383-T1
CSN-phase CSN-amp CSN-shape Average

DHIM THUMS DHIM THUMS DHIM THUMS DHIM THUMS

NDT_a1_x 98.97 91.81 69.26 68.90 89.48 81.84 85.90 80.85

NDT_a1_z 76.55 94.40 99.37 99.96 53.35 65.88 76.42 86.75

NDT_a6_x 99.29 83.48 96.39 83.53 81.17 84.46 92.28 83.82

NDT_a6_z 82.27 69.32 77.86 91.58 69.03 60.58 76.39 73.83

NDT_p1_x 99.42 99.95 63.60 82.70 94.37 82.33 85.60 88.33

NDT_p1_z 99.61 88.67 84.56 91.41 37.13 47.26 73.77 75.78

NDT_p6_x 99.58 99.80 86.84 96.41 93.09 82.21 93.17 92.80

NDT_p6_z 99.40 99.68 99.43 97.96 91.09 82.73 96.64 93.46

C755-T2

CSN-phase CSN-amp CSN-shape Average

DHIM THUMS DHIM THUMS DHIM THUMS DHIM THUMS

Ji et al. Page 15

Biomech Model Mechanobiol. Author manuscript; available in PMC 2017 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C383-T1
CSN-phase CSN-amp CSN-shape Average

DHIM THUMS DHIM THUMS DHIM THUMS DHIM THUMS

NDT_a1_x 98.66 99.64 96.11 97.18 82.77 86.77 92.52 94.53

NDT_a1_z 99.04 0 51.03 99.25 59.22 89.75 69.77 63.00

NDT_a5_x 79.11 99.04 94.10 82.73 99.86 83.34 91.02 88.37

NDT_a5_z 87.26 96.51 99.67 99.23 29.51 68.89 72.15 88.21

NDT_p1_x 99.48 94.60 99.84 97.47 81.57 96.29 93.63 96.12

NDT_p1_z 97.25 97.37 44.58 99.14 79.49 80.47 73.77 92.33

NDT_p5_x 64.34 71.71 97.43 83.32 48.33 72.17 69.91 75.74

NDT_p5_z 92.27 99.60 99.68 97.15 79.87 86.50 90.61 94.42

C393-T4

CSN-phase CSN-amp CSN-shape Average

DHIM THUMS DHIM THUMS DHIM THUMS DHIM THUMS

NDT_4_y 99.06

N/A

87.86

N/A

92.41

N/A

93.11

N/A
NDT_4_z 99.88 83.90 28.12 70.63

NDT_11_y 99.93 79.12 93.64 90.90

NDT_11_z 95.45 88.81 74.88 86.38

Average 93.34 86.60 84.97 91.75 72.92 78.22 83.74 85.52
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Fig. A1. 
Comparison of model-estimated relative brain-skull displacements with those measured for 

selected neutral density target (NDT) locations (a1, a6, p1, and p6) in a frontal impact 

(C383-T1).
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Fig. A2. 
Comparison of model-estimated relative brain-skull displacements with those measured for 

selected NDT locations (a1, a5, p1, and p5) in an occipital impact (C755-T2).

Fig. A3. 
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Comparison of the DHIM-estimated relative brain-skull displacements with those measured 

for selected NDT locations (4 and 11) in a parietal impact (C394-T4).
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Figure 1. 
The DHIM (a and b) and SIMon (c and d) employed in this study with color-coded regions 

of interest (ROIs; cerebrum, cerebellum, and brainstem). The DHIM also includes part of the 

spinal cord to improve its biofidelity in the inferior region, which was excluded from 

analysis in this study.
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Figure 2. 
Distributions of the independent variables (peak magnitudes and durations in (a), and 

azimuth and elevation angles in (b)) used to generate head impact kinematics (cross: alin, 

circle: arot); (c) Illustration of a representative head impact condition (arrows in (a) and (b) 

identify the variable values used to combine and produce the head impact kinematics); (d) 

normalized acceleration and velocity temporal profiles. Kinematic variable values for the 

identified impact are: , Δtrot=10.2 ms, , Δtlin=10.9 ms, 

θrot=153.7 deg, αrot=33.5 deg, θlin=−26.3 deg, and αlin=37.5 deg.
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Figure 3. 
Volume fractions for element-wise differences in εp, ε̇p, and σp generated from arot- and 

alin-only relative to their full-DOFs counterparts as a function of the difference percentage 

level for DHIM (top) and SIMon (bottom). To improve visualization, only results for the 

whole-brain and cerebrum are shown, which were nearly identical. Shaded areas indicate the 

ranges of differences from the 100 impacts simulated, while curves represent the average.
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Figure 4. 
Incidence frequency map in iso- (a, c, e, and g) and sagittal (b, d, f and h) views showing 

that element-wise large differences in εp between  and  (i.e., >10% relative to full-

DOFs counterparts (top) or >5% relative to the optimal injury threshold of 0.18 (bottom)) 

occurred mostly in the brainstem for DHIM. Color indicates the number of incidences where 

element-wise large differences occurred from the 100 simulations. For SIMon, large 

differences mostly occurred in the brainstem and inferior region of the cerebellum when 

normalized by the full-DOFs counterparts (c and d), but the occurrence frequency was low 

when compared to the injury-causing threshold (g and h).
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Figure 5. 
Volume fractions for element-wise differences in εp, ε̇p, and σp generated from arot-only 

relative to injury-causing thresholds as a function of the difference percentage level for 

DHIM (top) and SIMon (bottom). Again, only results for the whole-brain and cerebrum are 

shown to improve visualization, and they were virtually identical.
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Figure 6. 
Left: The head impact condition selected for comparison of simulation results in four views. 

Top right panel: Comparison of ε generated from full-DOFs, arot-only, and alin-only for 

DHIM and SIMon at the instance when the whole-brain volume-weighted ε reached its peak 

(occurred at t=13 ms for both models). Bottom right panel: the corresponding , , 

and  accumulated from the entire simulation. The spinal cord in DHIM was excluded 

for better comparison with the SIMon counterparts. Impact kinematic variable values are 

given in Fig. 2.
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Figure 7. 
Comparison of volume-weighted, time-varying, average responses of ε (top), ε̇ (middle), 

and σ (bottom) in the whole-brain, cerebrum, cerebellum, and brainstem obtained from 

DHIM (dark color) and SIMon (light color) using the same impact condition as in Fig. 6. 

For the whole-brain and cerebrum, responses from arot-only and full-DOFs were virtually 

identical. Arrow indicates an apparent secondary peak response of ε for DHIM, which was 

lacking or less evident for SIMon.
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Figure 8. 

Comparison of , , and  for the whole-brain when the brain’s bulk modulus 

was varied across 6 orders of magnitude based on DHIM. Typical bulk modulus values from 

some representative studies are shown.
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