18 research outputs found
Novel Structures of Type 1 Glyceraldehyde-3-phosphate Dehydrogenase from Escherichia coli Provide New Insights into the Mechanism of Generation of 1,3-Bisphosphoglyceric Acid.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208-215 of Escherichia coli GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the new Pi site attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation
Multiple transcriptome analyses reveal mouse testis developmental dynamics
Abstract The testes are the organs of gamete production and testosterone synthesis. Up to date, no model system is available for mammalian testicular development, and only few studies have characterized the mouse testis transcriptome from no more than three postnatal ages. To describe the transcriptome landscape of the developing mouse testis and identify the potential molecular mechanisms underlying testis maturation, we examined multiple RNA-seq data of mouse testes from 3-week-old (puberty) to 11-week-old (adult). Sperm cells appeared as expected in 5-week-old mouse testis, suggesting the proper sample collection. The principal components analysis revealed the genes from 3w to 4w clustered away from other timepoints, indicating they may be the important nodes for testicular development. The pairwise comparisons at two adjacent timepoints identified 7,612 differentially expressed genes (DEGs), resulting in 58 unique mRNA expression patterns. Enrichment analysis identified functions in tissue morphogenesis (3-4w), regulation of peptidase activity (4-5w), spermatogenesis (7-8w), and antigen processing (10-11w), suggesting distinct functions in different developmental periods. 50 hub genes and 10 gene cluster modules were identified in the testis maturation process by protein-protein interaction (PPI) network analysis, and the miRNA-lncRNA-mRNA, miRNA-circRNA-mRNA and miRNA-circRNA-lncRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed. The results suggest that testis maturation is a complex developmental process modulated by various molecules, and that some potential RNA-RNA interactions may be involved in specific developmental stages. In summary, this study provides an update on the molecular basis of testis development, which may help to understand the molecular mechanisms of mouse testis development and provide guidance for mouse reproduction
Additional file 1 of Multiple transcriptome analyses reveal mouse testis developmental dynamics
Supplementary Material
Different gene expression profiles of AD293 and HEK293 cell lines that show contrasting susceptibility to apoptosis induced by overexpression of Bim L
Bim is a pro-apoptotic member of the Bcl-2 protein family. Overexpression of Bim proved to be highly cytotoxic for diverse cells.The AD293 cell line is derived directly from the HEK293 cell line but has been transfected with a gene that can improve cell adherence.We found that there was almost no apoptosis seen in Bim L-transfected AD293 cells, but more than half ofBim L-transfected HEK293 cells underwent apoptosis. Suppression subtractive hybridizationwas used to detect the different gene expression profile between these two cell lines. In 192 sequencedpositive clones, there were 30 clones repeating twice or more. Ten genes were selected for identification by semi-quantitative RT-PCR.Thetranscripts of two adhesion-relatedgenes (actin and parvin)and two apoptosis-related genes (cyclin 2 and protein phosphatase 1G) were up-regulated in AD293 cells. These results suggest that the high expression of cell adhesion-related proteins might be responsible for the different apoptosis status after the transfection of Bim L.Our data provide candidate genes responsible for the different apoptosis sensitivity of these two cell lines. Further investigation on thedifferential expression profile between AD293 and HEK293 might improve our understanding of cell apoptosis mechanism
Overexpression of BimSs3, the novel isoform of Bim, can trigger cell apoptosis by inducing cytochrome c release from mitochondria
Bim is defined as the pro-apoptotic BH3-only protein of the Bcl-2 family, which is a critical sensor and mediator in the mitochondrial-dependent apoptosis. In a previous work, we have cloned a novel transcript of Bim (GenBank accession number: AY305716) from the fetal brain cDNA, which is widely expressed in some carcinoma tissues and normal human tissues. According to the sequence analysis and the newly-defined nomenclature system of Bim isoforms (Adachi et al., 2005, Cell Death Differ 2: 192), we term it BimSs3 according to its characteristic structure. The subcellular location analysis indicated that the fused protein GFP-BimSs3 is distributed in the whole cell, mainly to the nucleus. Overexpression of BimSs3 in HEK293 cells causes apoptosis (28.16 ± 1.55%) compared to the negative control (5.44 ± 2.63%). It also causes cytochrome c release from the mitochondrial fraction to the cytosolic fraction during apoptosis. Western blotting assay indicates the molecular mass of GFP-BimSs3 is approximately 31.0 kDa (GFP: 27 kDa). Hence the open reading frame of BimSs3 may initiate at the second ATG and encodes a 36 amino-acid peptide with BH3 domain
Isolation and expression pattern of RGS21 gene, a novel RGS member
Regulators of G-protein signaling (RGS) proteins are known for the RGS domain that is composed of a conserved stretch of 120 amino acids, which binds directly to activated G-protein α subunits and acts as a GTPase-activating protein (GAP), leading to their deactivation and termination of downstream signals. In this study, a novel human RGS cDNA (RGS21), 1795 bp long and encoding a 152-amino acid polypeptide, was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. Unlike other RGS family members, RGS21 gene has no additional domain/motif and may represent the smallest known member of RGS family. It may belong to the B/R4 subfamily, which suggests that it may serve exclusively as a negative regulator of αi/o family members and/or αq/11. PCR analysis showed that RGS21 mRNA was expressed ubiquitously in the 16 tissues examined, implying general physiological roles
GGNBP2 is necessary for testis morphology and sperm development
Gametogenetin Binding Protein 2 (GGNBP2) was identified as a tumor suppressor and verified as such by several studies. GGNBP2 has also been reported to be essential for pregnancy maintenance via regulation of trophoblast stem cells. Gametogenetin (GGN) is a testicular germ cell-specific gene expressed in adult testes. As a potential GGN1-interacting protein, the role of GGNBP2 in spermatogenesis has not yet been clarified. We generated heterozygous GGNBP2 knockout mice and bred them by intercrossing. We found that among the offspring, homozygous GGNBP2 knockout(KO) mice were present in severely reduced numbers. The GGNBP2 KO pups developed normally, but the male siblings showed dramatically reduced fertility. In these male homozygous GGNBP2 KO mice, the only pathological finding was abnormal morphology of the testes and absence of spermatozoa. In addition, increased apoptosis was observed in the testes of GGNBP2 KO mice. SOX9 staining revealed that SOX9-positive Sertoli cells were absent in the seminiferous tubules. In homozygous mice, proliferating cell nuclear antigen (PCNA)-positive cells were localized in the lumen of the convoluted seminiferous tubules. These results suggest that GGNBP2 plays a key role in spermatogenesis by affecting the morphology and function of SOX9-positive Sertoli cells