41 research outputs found

    Fast Visual Tracking with Squeeze and Excitation Region Proposal Network

    Get PDF
    Funding Information: This work was funded by the National Natural Science Foundation of China (Grant No. 62272063, 62072056, 61902041 and 61801170), Open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education, project of Education Department Cooperation Cultivation (Grant No. 201602011005 and No. 201702135098), China Postdoctoral Science Foundation (Grant No.Peer reviewedPublisher PD

    An Efficient Data Collection Protocol Based on Multihop Routing and Single-Node Cooperation in Wireless Sensor Networks

    Get PDF
    Considering the constrained resource and energy in wireless sensor networks, an efficient data collection protocol named ESCDD which adopts the multihop routing technology and the single-node selection cooperative communication is proposed to make the communication protocol more simple and easy to realize for the large-scale multihop wireless sensor networks. ESCDD uses the greedy strategy and the control information based on RTS/CTS to select forwarding nodes. Then, the hops in the multihop data transmission are reduced. Based on the power control in physical layer and the control frame called CoTS in MAC layer, ESCDD chooses a single cooperative node to perform cooperative transmission. The receiving node adopts maximal ratio combining (MRC) to recover original data. The energy consumption per hop is reduced. Furthermore, the total energy consumption in data collection process is shared by more nodes and the network lifetime is extended. Compared with GeRaF, EERNFS, and REEFG protocol, the simulation results show that ESCDD can effectively reduce the average delay of multihop data transmission, improve the successful delivery rate of data packets, significantly save the energy consumption of network nodes, and make the energy consumption more balanced

    Water vapor estimation based on 1-year data of E-band millimeter wave link in North China

    Get PDF
    Abstract. The amount of water vapor in the atmosphere is very small, but its content varies greatly in different humidity areas. The change in water vapor will affect the transmission of microwave link signals, and most of the water vapor is concentrated in the lower layer, so the water vapor density can be measured by the change in the near-ground microwave link transmission signal. This study collected 1-year data of the E-band millimeter wave link in Hebei, China, and used a model based on the International Telecommunication Union Radiocommunication Sector (ITU-R) to estimate the water vapor density. An improved method of extracting the water-vapor-induced attenuation value is also introduced. It has a higher time resolution, and the estimation error is lower than the previous method. In addition, this paper conducts the seasonal analysis of water vapor inversion for the first time. The monthly and seasonal evaluation index results show a high correlation between the retrieved water vapor density and the actual water vapor density value measured by the local weather station. The correlation value for the whole year is up to 0.95, the root mean square error is as low as 0.35 g m−3, and the average relative error is as low as 5.00 %. Compared with European Center for Medium-Range Weather Forecast (ECMWF) reanalysis, the correlation of the daily water vapor density estimation of the link has increased by 0.17, the root mean square error has been reduced by 3.14 g m−3, and the mean relative error has been reduced by 34.00 %. This research shows that millimeter wave backhaul link provides high-precision data for the measurement of water vapor density and has a positive effect on future weather forecast research. </jats:p

    Research on Rainfall Monitoring Based on E-Band Millimeter Wave Link in East China

    Get PDF
    Accurate rainfall observation data with high temporal and spatial resolution are essential for national disaster prevention and mitigation as well as climate response decisions. This paper introduces a field experiment using an E-band millimeter-wave link to obtain rainfall rate information in Nanjing city, which is situated in the east of China. The link is 3 km long and operates at 71 and 81 GHz. We first distinguish between the wet and the dry periods, and then determine the classification threshold for calculating attenuation baseline in real time. We correct the influence of the wet antenna attenuation and finally calculate the rainfall rate through the power law relationship between the rainfall rate and the rain-induced attenuation. The experimental results show that the correlation between the rainfall rate retrieved from the 71 GHz link and the rainfall rate measured by the raindrop spectrometer is up to 0.9. The correlation at 81 GHz is up to 0.91. The mean relative errors are all below 5%. By comparing with the rainfall rate measured by the laser raindrop spectrometer set up at the experimental site, we verified the reliability and accuracy of monitoring rainfall using the E-band millimeter-wave link.</jats:p

    miRNAs at the heart of the matter

    Get PDF
    Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated

    Cooperative Transmission Mechanisms in Next Generation WiFi: IEEE 802.11ac

    No full text
    Very high throughput (VHT) WLAN, known as IEEE 802.11ac, can provide compelling performance and has attracted extensive attention for achieving transmission rate over 1 G bps for 5 GHz band owing to involving the MU-MIMO and maximum 160 MHz bandwidth transmission. Despite extensive studies and dramatic performance, the conventional carrier sensing mechanism emerges some drawbacks especially in the overlapping BSS scenario responsible for employment of MU-MIMO and bandwidth expansion. In order to address the issue of conventional carrier sensing mechanism, namely, redundant or useless network allocation vector (NAV) setting, this paper proposes an enhanced NAV transmission mechanism, which not only needs little modifications to current standard draft but also can achieve performance improvement significantly. On this basis, in order to solve the SINR inaccuracy calculated based on null data packet (NDP) in the actual MU-MIMO transmission, the SINR feedback mechanism is proposed and the frame structure modifications are displayed in detail. Furthermore, theoretical analysis is also performed on the proposed mechanism and the formulas of the achieved gains are also derived. Numerical results confirm the validation of our theoretical analysis and further substantiate that the proposed scheme obtains obvious throughput gain over the conventional mechanism

    Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements

    No full text
    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches

    Robust Beamforming Design for Secure V2X Downlink System with Wireless Information and Power Transfer under a Nonlinear Energy Harvesting Model

    No full text
    Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes
    corecore