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Abstract 

Siamese trackers have achieved significant progress over the past few years. However, the existing methods 

are either high speed or high performance, and it is difficult for previous Siamese trackers to balance both. In 

this work, we propose a high-performance yet effective tracker (SiamSERPN), which utilizes MobileNetV2 as 

the backbone and equips with the proposed squeeze and excitation region proposal network (SERPN). For the 

SERPN block, we introduce the distance-IoU (DIoU) into the classification and regression branches to remedy 

the weakness of traditional RPN. Benefiting from the structure of MobileNetV2, we propose a feature 

aggregation architecture of multi-SERPN blocks to improve performance further. Extensive experiments and 

comparisons on visual tracking benchmarks, including VOT2016, VOT2018, and GOT-10k, demonstrate that 

our SiamSERPN can balance speed and performance. Especially on GOT-10k benchmark, our tracker scores 

0.604 while running at 75 frames per second (FPS), which is nearly 27 times that of the state-of-the-art tracker. 

 

Keywords 

Object Tracking, Siamese Network, MobileNet-V2, SERPN, Distance-IoU 

 

 

1. Introduction 

Visual object tracking is one of the most fundamental yet challenging topics in computer vision [1], 

and it has come into a wide range of applications [2–7]. Over the past few years, due to the neural network 

structure from shallow to deep, the Siamese network-based trackers that utilize the neural network as the 

backbone have achieved significant progress. But meanwhile, the Siamese tracking models are becoming 

increasingly heavy, which severely slows down the speed of the Siamese trackers and even below the 

minimum speed of real-time—25 frames per second (FPS), minimum rate for computer vison and 

industrial applications. For instance, the latest SiamRPN++ [8] and SiamRCNN [9] trackers, respectively, 

only run at 35 FPS and 2 FPS to achieve state-of-the-art performance, being much slower than the early 

SiamFC [10] and SiamRPN [11] method that adopts shallow networks as the backbone, as visualized in 
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Fig. 1. Therefore, how to keep the balance between performance and speed is one of the main challenges 

for the Siamese trackers. 

 

Fig. 1. Comparisons with the mainstream trackers in terms of except average overlap (EAO) 

performance, speed in the VOT2016 benchmark. The circle diameter is in proportion to the 

combination of EAO value and Speed value, and the upper right corner the better. Best viewed in color. 

 

However, existing compression techniques such as model pruning and quantization can reduce trackers’ 

complexity, while they inevitably bring non-negligible performance degradation due to information loss. 

Different from traditional solutions, this paper proposes a simple yet effective visual tracking 

framework named Siamese-SERPN (SiamSERPN) to alleviate the problem of the incompatibility of 

speed and performance. Specifically, the SiamSERPN consists of a Siamese subnetwork for feature 

extraction and multiple SERPN blocks for region proposals. For the former, we utilize two identical 

lightweight deep networks MobileNetV2 [12], as the feature extraction backbone. Because the inverted 

residual block and linear bottlenecks block of MobileNetV2 not only drives it to be as efficient as the 

shallow network but also makes it can capture low-level information as the deep networks. Nevertheless, 

since the structure of lightweight networks is simpler than that of the very deep networks, performance 

degradation is still inevitable. 

Inspired by this observation, to compensate for the performance loss caused by the lightweight network, 

we propose the SERPN block, which consists of a standard RPN and a squeeze excitation network [13], 

where the standard RPN includes the classification and regression branches. In the classification branch, 

we introduce the distance intersection-over-union (DIoU) [14] metric to distinguish the object from the 

background, and in the regression branch, we adopt the DIoU metric as the loss function for bounding 

box regression. The introduction of DIoU can tackle two nature disadvantages of traditional RPN at once. 

One is that the IoU metric used in the classification branch cannot focus on the distance between the 

predicted bounding box and the ground-truth box, leading the IoU metric to handle the relationship 

between two boxes in complex scenarios insufficiently, and the other is that the smooth Ln-norm adopted 

in the regression branch treats the coordinates of the predicted bounding box as independent variables for 

optimization, which goes against the intuition that those variables are correlated and should be regressed 

jointly. Additionally, benefiting from the MobileNetV2 architecture, we propose a layer-wise feature 

aggravation structure for the cross-correlation operation, which assists the tracker predicts the similarity 

map from features at multiple levels and further compensates for the performance loss. 

Using the proposed SiamSERPN, we conduct extensive experiments on three large tracking 

benchmarks, in which it scores 0.479 and 0.401 on the VOT2016 [15] and VOT2018 [16] benchmarks. 

Especially the results on the VOT2016 benchmark, the proposed SiamSERPN outperforms state-of-the-

art SiamRCNN by 4% and runs at nearly 70 FPS. Meanwhile, on the GOT-10k [17] benchmark, our 

tracker ranks second, yet runs at 75 FPS. The comprehensive experiments confirm that the proposed 

tracker is effective and efficient. 

To summarize, this work makes the following contributions: 
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⚫ We propose a fast Siamese tracker using a lightweight backbone that maintains competitive 

performance while running at 75 FPS. 

⚫ We design the SERPN block and propose the SERPN aggregation structure to compensate for the 

performance loss caused by the lightweight backbone. 

⚫ We introduce the DIoU metric into the classification branch and regression branch of the proposed 

SERPN to remedy the natural deficiencies of the standard RPN. 

The structure of this paper is expressed as follows. Section 2 briefly presents the work related to this 

paper. Section 3 introduces the framework of SiamSERPN. Section 4 conducts comprehensive experiments 

on our proposed method with the latest trackers on three large benchmarks. Section 5 gives the conclusions 

and prospects of this paper. 

 

2. Related Work  

Visual tracking is one of the most active research topics in computer vision in recent decades. Many 

excellent methods have emerged [18–23], from correlation filter-based trackers to deep learning-based 

trackers. A comprehensive survey of the trackers is beyond the scope of this paper, so we only briefly 

review three aspects that are most relevant to our work: Siamese network-based visual trackers, deep 

architecture, and RPN in detection, in which the Siamese visual tracker is our major direction. Therefore, 

to clearly review the related work, the contributions of the mainstream anchor-based Siamese trackers 

are listed in Table 1 [8–11, 24, 25]. 

 

Table 1. Related studies of the mainstream anchor-based Siamese trackers 

Study Proposed methods Main contributions 
Performance 

(on VOT2016) 

Speed 

(FPS) 

Bertinetto et al. [10] SiamFC First Siamese tracker used shallow network 0.387 86 

Li et al. [11] SiamRPN Introduce RPN into Siamese trackers 0.393 160 

Zhu et al. [24] DaSiamRPN Expand more dataset to SiamRPN 0.411 160 

Li et al. [8] SiamRPN++ Introduce very deep network into Siamese tracker 0.464 35 

Wang et al. [25] SiamMask Add Semantic segmentation 0.412 77 

Voigtlaender et al. [9] SiamRCNN Proposed re-detection 0.460 4.7 

 

2.1 Siamese Network-Based Visual Trackers 

Recently, the Siamese network-based trackers attracted great attention from the visual tracking 

community due to their end-to-end training capabilities and high efficiency [10, 26]. SiamFC [10] adopts 

the Siamese network as a feature extractor and introduces the correlation layer to combine feature maps 

for the first time. Owing to its light structure and no need to model updates, SiamFC runs efficiently at 

86 FPS. To get a more accurate object bounding box, SiamRPN [11] introduces the RPN [27] into the 

SiamFC, which improves performance but struggles to deal with distractors when facing similar 

appearances to the object. DaSiamRPN [24] tries to expand more datasets and improve the tracker’s 

generalization by enhancing positive samples from large-scale datasets. Up to now, the framework has 

been modified a lot from SiamFC, and although they still are fast trackers, the performance cannot move 

on with a deeper network by using AlexNet [28] as the backbone. Aiming to address this problem, 

SiamRPN++ [8] successfully trains a tracker that uses the very deep network ResNet [29] as the backbone 

by randomly shifting the object location in the search region during model training to eliminate the center 

bias. Following SiamRPN++, SiamMask [25], and SiamRCNN [9] adopt ResNet as the backbone for 

feature extraction. Benefiting from very deep networks, though these anchor-based trackers can achieve 

state-of-the-art performance, their speed is severely degraded. A series of anchor-free trackers, such as 
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SiamCAR [30], SiamFC++ [31], and SiamBAN [32], are designed to solve this problem, but the 

performance is naturally weaker than anchor-based ones. 

 

2.2 Deep Architecture 

With the proposal of modern convolutional architecture AlexNet [28] in 2012, the research of networks 

is developing rapidly, and numerous sophisticated architectures are proposed, such as VGG [33], ResNet 

[29], and GhostNet [34], to name a few. These deep networks push the latest research on many computer 

vision tasks forward. But meanwhile, their excessively deep structure leads to these tasks becoming heavy 

and expensive. Inspired by the observation, MobileNet [12, 35, 36] proposes lightweight networks to 

alleviate the conflict between performance and efficiency. Following MobileNet's idea, we believe that 

the Siamese network-based trackers can also find a balance between performance and efficiency to 

address the current phenomenon that these trackers prefer to sacrifice speed for performance. 

 

2.3 RPN in Detection 

Before RPN, traditional methods are time-consuming and insufficiently quality in object detection. 

Fast R-CNN [27] first proposed RPN to extract more precise proposals using the supervision of both 

foreground-background classification and bounding box regression. Many variants based on Fast R-CNN 

have emerged since then. R-FCN [37] takes the component’s position information into account, and FPN 

[38] employs a feature pyramid network to improve the performance of tiny object detection. In contrast 

to two-stage detectors, the improved versions of RPN, such as DetectoRS [39] and YOLOv4 [40] are 

efficient detectors. However, the RPN in visual tracking is different from detection. Simply introducing 

RPN into visual tracking may lead to its struggle to process complex scenes, which not only increases 

the model's weight but also seriously degrades its robustness. 

The speed of RPN-based Siamese network trackers gradually slows down with the performance 

improvement after utilizing the deep network as the backbone, which the previous researchers usually 

ignore. Some trackers run at nearly 30 FPS, and some even below 25 FPS, making it difficult to apply 

theoretical methods to industrial applications. The proposed method utilizes the lightweight yet deep 

network as the backbone to speed up, and inspired by RPN, SERPN is designed to compensate for the 

performance loss caused by the lightweight network. The proposed method will balance the two aspects 

of performance and speed by utilizing a light yet deep network, which is expected to narrow the gap 

between academic theory and industrial applications. 

 

3. SiamSERPN Framework 

In this section, we illustrate the proposed SiamSERPN framework. As shown in Fig. 2, the proposed 

SiamSERPN consists of a Siamese network backbone and multiple SERPN blocks. The Siamese network 

backbone is responsible for computing the convolutional feature maps of the template patch and the 

search patch, which uses a lightweight convolutional network. The SERPN block includes a classification 

branch and a regression branch. Specifically, the classification branch performs foreground-background 

classification on each point of the correlation layer, and the regression branch performs bounding box 

regression on the corresponding position. 

 

3.1 MobileNet-driven Siamese Tracking 

Modern deep neural networks [29] have proven to be effective as the feature extraction backbone in 

Siamese network-based trackers [8], which has led to an increasing number of trackers [9, 25] using the 

deep network as the backbones. Although the performance of trackers has improved, the resulting 
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inefficiencies have been neglected. In our work, we utilize MobileNetV2 [12] as the backbone network, 

whose parameters are listed in Table 2.  
 

reg
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Conv3 Conv5

Search Image

Target Image
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255

3

3

Conv7

SERPN SERPN SERPN
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Fig. 2. Main diagram of our proposed framework. Given the target template image and search image, 

the proposed model outputs a dense prediction by fusing the outputs feature from multi SERPN blocks 

equipped on conv3, conv5, and conv7. cls denotes the classification branch, and reg represents the 

regression branch. 

 

However, the original MobileNetV2 cannot be adopted directly for dense Siamese network prediction 

because it has a large stride of 32 pixels, which impacts the accuracy of the location of visual tracking. 

Therefore, we reduce the effective stride of conv5 and conv7 blocks to 8 pixels in order to have the unit 

spatial stride and increase their receptive field with dilated convolution [41], which leads to the captured 

information being naturally different. An extra 1×1 convolutional layer is appended to the output of each 

block to reduce the channel to 256. Besides, since the original purpose of MobileNetV2 is for image 

classification, we remove the last fully connected layer to accommodate visual tracking. 

As the feature extractor, the backbone of the Siamese network consists of two identical branches with 

shared parameters, one of which is called the search branch and receives the search patch of size 

255×255×3 (denoted as x). The other is called the template branch and receives the target template patch 

of size 127×127×3 (denoted as z). These two inputs are fed into the MobileNetV2 to generate the output 

feature maps. Then, the similarity response of the two different output feature maps, 𝜑(𝑥) and 𝜑(𝑧), is 

calculated by cross-correlation operation: 
 

𝑀(𝑥, 𝑧) = 𝜑(𝑥) ∗ 𝜑(𝑧) (1) 
 

where * denotes the cross-correlation operation. 

In addition, to reduce the heavy computational burden, we crop the input images of the template 

branch, keeping the central region of 7×7 as the template feature and the average RGB values to fill the 

rest, which still captures the entire target region [10]. 

 

Table 2. Siamese network tracker utilizes two identical convolutional neural networks as the backbone 

network, so the Siamese network tracker is inherently heavier and more expensive than other computer 
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vision tasks (limited by objective experimental conditions, we give part of the parameters of our backbone 

network in the table) 

Layer (type) Output shape Parameters Connected to 

Input_1 (input layer) (None, 255, 255, 3) 0  

Conv1_pad (ZeroPadding2D) (None, 255, 255, 3) 0 Input_1[0][0] 

Conv1 (Conv2D) (None, 112, 112, 32) 864 Conv1_pad [0][0] 

Bn_Conv1(BatchNormalization) (None, 112, 112, 32) 128 Conv1[0][0] 

Conv1_relu (Relu) (None, 112, 112, 32) 0 Bn_Conv1[0][0] 

Expanded_conv_depthwise_Depthw (None, 112, 112, 32) 288 Conv1_Relu [0][0] 

Expanded_conv_depthwise_BN (None, 112, 112, 32) 128 Expanded_conv_depthwise [0][0] 

Expanded_conv_depthwise_Relu (None, 112, 112, 32) 0 Expanded_conv_depthwise_BN [0][0] 

Expanded_conv_project (None, 112, 112, 16) 512 Expanded_conv_depthwise_Relu [0][0] 

Expanded_conv_depthwise_BN (None, 112, 112, 16) 64 Expanded_conv_project [0][0] 

Block_1_expand (Conv2D) (None, 112, 112, 96) 1536 Expanded_conv_depthwise_BN [0][0] 

Block_1_expand_BN (BatchNormalization) (None, 112, 112, 96) 384 Block_1_expand [0][0] 

Block_1_expand_relu (Relu) (None, 112, 112, 96) 0 Block_1_expand_BN [0][0] 

Block_1_pad (ZeroPadding2D) (None, 113, 113, 96) 0 Block_1_expand_relu [0][0] 

Block_1_depthwise (None, 56, 56, 96) 864 Block_1_pad [0][0] 

Block_1_depthwise_BN (BatchNormalization) (None, 56, 56, 96) 384 Block_1_depthwise [0][0] 

Block_1_depthwise_relu (Relu) (None, 56, 56, 96) 0 Block_1_depthwise_BN [0][0] 

Block_1_project (Conv2D) (None, 56, 56, 24) 2304 Block_1_depthwise_relu [0][0] 

Block_1_project_BN (None, 56, 56, 24) 96 Block_1_project [0][0] 

Block_2_expand (Conv2D) (None, 56, 56, 144) 3456 Block_1_project_BN [0][0] 

…
 

…
 

…
 

…
 

Block_16_project_BN (BatchNormalization) (None, 7, 7, 320) 1280 Block_16_project [0][0] 

Total parameters (2,257,984), Trainable parameters (2,223,872), Non-trainable parameters (34,112), and Parameters in Siamese 

backbone network (4,515,968). 

 

 

3.2 Region Proposal Network with Squeeze and Excitation 

As shown in Fig. 3, the SERPN block consists of the pair-wise correlation, supervision, and squeeze 

excitation sections. In particular, the supervision section includes the classification and regression 

branches, in which the former is responsible for the foreground-background classification, and the latter 

is used for proposal regression. If there are k anchors, the block needs to output 2k channels for 

classification and 4k channels for regression. The rough features from the Siamese backbone are fed into 

the SERPN, where those from the search branch are denoted as 𝜑(𝑥) and those from the template branch 

are denoted as 𝜑(𝑧). Once into SERPN, 𝜑(𝑥) is first split into two branches (𝜑(𝑥)𝑐𝑙𝑠 and 𝜑(𝑥)𝑟𝑒𝑔) while 

keeping the channels unchanged, and then the pair-wise correlation section also increase the channels of 

𝜑(𝑧) to two branches 𝜑(𝑧)𝑐𝑙𝑠 and 𝜑(𝑧)𝑟𝑒𝑔 which have 2k and 4k times in channel respectively by two 

convolutional layers. In both two branches, 𝜑(𝑧) is served as the convolutional kernel of 𝜑(𝑥)  and 

performs the convolutional operation with 𝜑(𝑥), which means the channel number in 𝜑(𝑧) is the same 

as the overall channel number of 𝜑(𝑥). The computation process can be defined as follows in both 

classification and regression branches: 
 

𝑆𝑤×ℎ×2𝑘
𝑐𝑙𝑠 = [𝜑(𝑥)]𝑐𝑙𝑠 ⋆ [𝜑(𝑧)]𝑐𝑙𝑠

 𝑆𝑤×ℎ×4𝑘
𝑟𝑒𝑔

= [𝜑(𝑥)]𝑟𝑒𝑔 ⋆ [𝜑(𝑧)]𝑟𝑒𝑔

 (2) 

 

where the template features 𝜑(𝑧)𝑐𝑙𝑠  and 𝜑(𝑧)𝑟𝑒𝑔  are used as kernels, ⋆  represents the convolution 

operation. For convenience, 𝑆𝑤×ℎ×2𝑘
𝑐𝑙𝑠  and 𝑆𝑤×ℎ×4𝑘

𝑟𝑒𝑔
 are uniformly denoted by S. 
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The squeeze excitation section includes the squeeze submodule and the excitation submodule, detailed 

in the right side of Fig. 3. Different from the traditional SENet [13], we remove the beginning 

transformation to reduce the computational complexity and let the rough features input the squeeze 

submodule directly. The squeeze submodule first replicates the rough features into two samples. One 

sample is the original input features (denoted as 𝑆𝑎), which are retained. In contrast the global spatial 

information of the other sample (denoted as 𝑆𝑏) is squeezed to a channel descriptor by global average 

pooling to generate channel-wise statics. Formally, a statistic 𝐷 ∈ ℝ𝐶  is generated by shrinking the 

sample 𝑆𝑏 through spatial dimensions 𝐻 × 𝑊, where the c-th elements of 𝐷𝑐 is calculated by: 

 

𝐷𝑐 = 𝐹𝑠𝑞(𝑆𝑏) =
1

𝑤 × 𝐻
∑ ∑ 𝑆(𝑖, 𝑗)ℎ

𝑗=1
𝑤
𝑖=1

                              = 𝐹𝑠𝑞(𝑆𝑤×ℎ×2𝑘
𝑐𝑙𝑠 ) =

1
𝑤 × 𝐻

∑ ∑ 𝑆𝑤×ℎ×2𝑘
𝑐𝑙𝑠 (𝑖, 𝑗)ℎ

𝑗=1
𝑤
𝑖=1

                              = 𝐹𝑠𝑞(𝑆𝑤×ℎ×4𝑘
𝑟𝑒𝑔

) =
1

𝑤 × 𝐻
∑ ∑ 𝑆𝑤×ℎ×4𝑘

𝑟𝑒𝑔
(𝑖, 𝑗)ℎ

𝑗=1
𝑤
𝑖=1

 (3) 

 

where h and w represent the height and width of sample 𝑆𝑏 in spatial dimensions.  
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Fig. 3. The main framework diagram of SERPN, it consists of two branches, one for classification  

and the other for regression. Pair-wise correlation is adopted to obtain the output features of two 

branches. In the classification branch, the output feature map has 2k channels corresponding to the 

foreground and background of k anchors, and in the regression branch, the output feature maps have 4k 

channels corresponding to the four coordinates used for proposal refinement of k anchors. ⋆ denotes 

correlation operator. 

 

To utilize the information aggregated in the squeeze operation, we follow the second that fully captures 

channel-wise dependencies. In the excitation submodule, we adopt a simple gating mechanism with a 

sigmoid activation, which ensures that the function can learn a nonlinear interaction between channels 

and learn a non-mutually exclusive relationship. Meanwhile, to limit model complexity, we parameterize 

the gating mechanism by forming a bottleneck with two fully connected layers around the nonlinear, one 

for dimensionality-reduction with parameters 𝑊1 and reduction ratio r, and the other for dimensionality-

increasing with parameters 𝑊2. The operations in the excitation submodule are represented as follow: 
 

𝑅 = 𝐹𝑒𝑥(𝐷𝑐, 𝑊) = 𝜎(𝑔(𝐷𝑐 , 𝑊)) = 𝜎(𝑊2 𝑅𝑒𝑙𝑢(𝑊1 𝐷𝑐  )) (4) 

 

where 𝜎 represents the sigmoid activation, 𝑊1 ∈ ℝ𝐶/𝑟×𝐶  and 𝑊2 ∈ ℝ𝐶×𝐶/𝑟 , Relu represents the ReLu 

function used in nonlinear. The refine outputs are performed by the channel-wise multiplication between 

the weight one-dimensional vector 𝑅 and the original input features 𝑆𝑎, referred to as re-weight: 
 

𝐻 = 𝐹𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐷𝑐, 𝑅) = 𝐷𝑐   𝑅 (5) 
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where 𝐻 represents the refined features and  refers to channel-wise multiplication. 

 

3.3 Multi-Level Aggregation 

In the previous works, which only use shallow networks like AlexNet [27], multi-level features cannot 

provide very different representations. However, different layers in ResNet are much more meaningful 

considering that the receptive fields vary a lot. Therefore, SiamRPN++ [8] utilizes ResNet [29] as the 

backbone because it can capture lower-level information, which makes multi-level features aggregation 

possible. Similar, in our work, MobileNetV2, as the lightweight deep network that is intermediate 

between shallow and very deep ones, has a deeper architecture than shallow networks, which equally 

leads to aggregating different layers becoming possible. Benefiting from the dilated convolution 

mentioned in Section 3.1, the spatial resolution of the conv3, conv5, and conv7 blocks of our backbone 

network are the same, the outputs of their channels are unified to 256. 

In our work, multi-branch features are extracted into inferring the target localization collaboratively. 

As for MobileNetV2, we explore multi-level features extracted from the three convolutional layers for 

our multi-level aggregation. We denote these outputs as 𝐹3(𝑧), 𝐹5(𝑧), 𝐹7(𝑧), respectively. As shown in 

Fig. 2, the outputs of conv3, conv5 and conv7 are fed into three SERPN blocks individually. 

Due to the three SERPN blocks’ output sizes having the same spatial resolution, the weighted sum is 

adopted directly on the SERPN output. All the three SERPN blocks linearly combine a final feature-

fusion, which is defined as follows: 
 

𝐶𝑎𝑙𝑙
𝑐𝑙𝑠 = ∑ 𝛼𝑖

𝑖=3,5,7

∗ 𝐶𝑙
𝑐𝑙𝑠   𝐵𝑎𝑙𝑙

𝑟𝑒𝑔
= ∑ 𝛽𝑖

𝑖=3,5,7

∗ 𝐵𝑙
𝑟𝑒𝑔

 (6) 

 

where 𝛼𝑖  and 𝛽𝑖 are the weights corresponding to each map and are optimized together with network. 

By aggregating classification graphs and regression features separately, classification branches and 

regression branches can focus on the areas they need to. 

 

3.4 SERPN with Classification and Regression 

Classification and bounding box regression are two of the most critical tasks in anchor-based trackers. 

Still, the components adopted in the anchor-based tracker suffer from invisible defects that prevent further 

performance enhancements to the tracker. 

 

3.4.1 Classification task 

In the classification branch of the standard RPN, the IoU metric is widely used to evaluate the similarity 

between the predicted bounding box and the ground-truth box. Specifically, the IoU comes from the 

intersection area of two boxes divided by the union area of these two boxes, as defined by Equation (6). 

However, when multiple predicted bounding box (𝐵1
𝑝
, 𝐵2

𝑝
, 𝐵3

𝑝
, …, 𝐵𝑘

𝑝
) enumerated by RPN overlap with 

the ground-truth box (𝐵𝑔𝑡), although their IoU values may be equal, i.e., IoU (𝐵1
𝑝
, 𝐵𝑔𝑡) = IoU (𝐵2

𝑝
, 𝐵𝑔𝑡) 

= IoU (𝐵3
𝑝
, 𝐵𝑔𝑡) = IoU (𝐵𝑘

𝑝
, 𝐵𝑔𝑡), each group of boxes may overlap in different ways actually, as shown 

in Fig. 4, which leads to IoU metric misjudgment in complex scenes. 
 

𝐼𝑜𝑈 =
|𝐵𝑃  ∩  𝐵𝑔𝑡|

|𝐵𝑃  ∪  𝐵𝑔𝑡|
 (7) 

 

where 𝐵𝑝 and 𝐵𝑔𝑡 represents the predicted bounding box and the ground-truth box, respectively. 
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IoU(B1
p, Bgt) = 0.33

DIoU(B1
p, Bgt) = 0.33

IoU (B2
p, Bgt) = 0.33

DIoU(B2
p, Bgt) = 0.1  

Fig. 4. The IoU metric does not reflect the overlap direction. When multiple predicted bounding boxes 

overlap with the ground-truth box, each group has the equal IoU value but may be completely different 

in the actual overlap direction. The green box is the ground-truth box, and the solid black box is the 

predicted bounding box. 

 

In SERPN, we expect to introduce the DIoU metric used in object detection to solve this problem. 

Compared with the IoU metric, the DIoU metric is more concerned with the distance between the 

predicted bounding box and the ground-truth box. Based on the original IoU metric, it introduces a penalty 

term that is the center distance between the predicted bounding box and the ground-truth box divided by 

the diagonal length of the smallest enclosing shape. However, directly introducing the DIoU metric into 

visual tracking may adversely affect the core penalty term. Therefore, we normalize the smallest 

enclosing shape as the rectangle in the DIoU metric, making it more adaptive with the predicted bounding 

box and the ground-truth box, as described in Algorithm 1. 

 

Algorithm 1. DIoU metric for classification tasks 

Input: the predicted bounding box 𝐵𝑝 and the ground-truth box 𝐵𝑔𝑡 

Output: DIoU metric 

1. For 𝐵𝑝 and 𝐵𝑔𝑡, find the smallest enclosing shape E and fix it as a rectangle 

2. Calculate the Euclidean distance d between the center points of 𝐵𝑝 and 𝐵𝑔𝑡 

3. Calculate the diagonal length c of the smallest enclosing rectangle E 

4. 𝐼𝑜𝑈 =
|𝐵𝑝 ∩ 𝐵𝑔𝑡|

|𝐵𝑝 ∪ 𝐵𝑔𝑡| 

5. 𝐷𝐼𝑜𝑈 = 𝐼𝑜𝑈 +
𝑑2

𝑐2  

 

3.4.2 Bounding box regression 

Bounding box regression is the significant step for anchor-based trackers. In existing methods, while 

the smooth Ln-norm is widely adopted for bounding box regression, it is not matched to the evaluation 

method in the classification branch. 

For the smooth Ln-norm loss used in the regression branch of the standard RPN, let 𝑥1
𝑝
, 𝑦1

𝑝
, 𝑥2

𝑝
, 𝑦2

𝑝
 

denote the upper-left and lower-right coordinates of the predicted bounding box, and let 𝑥1
𝑔

, 𝑦1
𝑔

, 𝑥2
𝑔

, 𝑦2
𝑔

 

represents the upper-left and lower-right coordinates of the ground-truth box, the offset between two 

boxes is calculated as follows: 
 

𝛿[0] =
𝑥1

𝑔
− 𝑥1

𝑝

𝑥2
𝑝

− 𝑥1
𝑝    𝛿[1] =

𝑦1
𝑔

− 𝑦1
𝑝

𝑦1
𝑝

− 𝑦2
𝑝 

    𝛿[2] = 𝑙𝑛
𝑥2

𝑔
− 𝑥1

𝑝

𝑥2
𝑝

− 𝑥1
𝑝  𝛿[3] = 𝑙𝑛

𝑦1
𝑔

− 𝑦2
𝑝

𝑦1
𝑝

− 𝑦2
𝑝  

(8) 

 

They pass through the smooth Ln-norm loss which can be written as follows: 
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𝑠𝑚𝑜𝑜𝑡ℎ(𝑥) = {
0.5𝜎2𝑥2     |𝑥| <

1

𝜎2

|𝑥| −
1

𝜎2
    |𝑥| ≥

1

𝜎2

 (9) 

 

The total loss in the regression branch is obtained by directly adding up the losses for each of the 

individual coordinates. The following equation can define it: 
 

𝐿𝑟𝑒𝑔 = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ(𝛿[𝑖], 𝜎)

3

𝑖=0

 (10) 

 

From Equations (9) and (10), we can see that the smooth Ln-norm loss function used by the standard 

RPN treats the coordinates of the predicted bounding box as independent variables for optimization rather 

than training them as an entirety. It goes against the intuition that those variables are correlated and should 

be regressed jointly. Although some trackers [30–32] notice this problem and adopt the IoU loss [42] for 

regression task, the IoU loss only works when the predicted bounding box and the ground-truth box 

overlap and do not provide any moving gradient for non-overlapping cases. 

To solve this problem, we explore using the DIoU metric as the bounding box regression loss because 

it has the advantages of IoU loss. DIoU loss also provides the moving gradient for optimization when 

there is no overlap between the predicted bounding box and the ground-truth box. In particular, the DIoU 

loss focuses on the central distance between the predicted bounding box and the ground-truth box, which 

pushes it to converge faster than the IoU loss to increase the tracker’s speed further. Similar to IoU loss, 

we define DIoU loss as: 
 

𝐿𝐷𝐼𝑜𝑈 = 1 − 𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝑑2

𝑐2
 (11) 

 

Specially, when the predicted bounding box and the ground-truth box perfectly match, 𝐿𝐷𝐼𝑜𝑈 = 0, and 

when two boxes are far away, 𝐿𝐷𝐼𝑜𝑈 → 2. 

 

4. Experimental Results and Analysis 

4.1 Training Dataset 

The backbone network of our tracker is pre-trained on ImageNet [43] for image labelling because the 

pre-trained network converges faster, which has been proven in other works [8]. We train the network on 

training dataset of ImageNet-DET [43], ImageNet-VID, COCO [44], LaSOT [45] and GOT-10k (For 

training) [17] to learn a generic notion of how to measure the similarities between general objects for 

visual tracking. In both training and testing, we use single scale images with 127 pixels for template 

images and 255 pixels for search images. 

 

4.2 Implementation Details 

In our experiments, we follow SiamRPN++ [8] for the training and inference settings. Our proposed 

method SiamSERPN is trained with stochastic gradient descent (SGD) and sets the batch size to 64. We 

trained a total of 50 epochs, with a warm-up learning rate of 0.001 for the first 10 epochs to train the 

SERPN. The last 40 epochs train the entire network end-to-end with a learning rate that exponentially 

decreases from 0.005 to 0.0005. Weight decay is 0.0005, and momentum is 0.9. In SiamSERPN, the loss 

function in the classification branch uses the cross-entropy loss, and the regression branch uses the DIoU 

loss from Section 3.4. The training loss is the sum of classification loss and the DIoU loss for regression. 

Our approach is implemented in Python using PyTorch on a PC with Intel Xeon E5-2667 v3 3.20 GHz 
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CPU, 32 G RAM, and Nvidia RTX 2080ti. The training time for the model lasts about a week, 

depending on the PC’s GPU specifications. Implementation Details about hardware configurations and 

hyperparameters of our experiment are given in Table 3. 

 

Table 3. Implementation details of the hardware configurations and hyper-parameters in experiments 

Hardware Software 

CPU Intel Xeon E5-2667 v3 Training epoch 50 

GPU Nvidia RTX 2080ti Warm-up learning rate 0.001 

RAM 32G Learning rate 0.005 to 0.0005 

  Momentum 0.9 

  Classification loss Cross-entropy loss 

  Regression loss DIoU loss 

 

4.3 Comparisons and Analyses 

We compare the proposed SiamSERPN tracker with other current mainstream trackers in three 

extensive tracking benchmarks, including VOT2016, VOT2018, and GOT-10k (for testing). It is worth 

noting that the performance evaluation methods adopted in our comparisons and analysis are given by 

the official papers of the tracking benchmarks. 

 

4.3.1 VOT2016 dataset 

We test our SiamSERPN tracker on the VOT-2016 benchmark [15] in comparison with the current 

mainstream trackers. The VOT2016 public dataset is one of the most common benchmarks for evaluating 

single object trackers and includes 60 public video sequences with different challenge factors. Following 

the evaluation protocol of VOT-2016, we adopt the except average overlap (EAO), accuracy (average 

overlap during successful tracking periods) and robustness (failure rate) to compare different trackers. 

Accuracy expresses the overlap between the predicted bounding box and the ground-truth box, and it can 

be calculated as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁𝑣𝑎𝑙𝑖𝑑

∑ 𝑂𝑆𝑡

𝑁𝑣𝑎𝑙𝑖𝑑

𝑡=1

 (11) 

 

where 𝑂𝑆𝑡 denotes the overlap rate at t frame, 𝑁𝑣𝑎𝑙𝑖𝑑 denotes the number of video sequences that are 

successfully tracked. As previously mentioned, the robustness represents the stability of the tracker, 

where the larger value indicates the poorer stability, and it calculated as: 
 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
1

𝑁𝑟𝑒𝑝

∑ 𝐹(𝑘)

𝑁𝑟𝑒𝑝

𝑘=1

 (12) 

 

where 𝐹(𝑘) represents the initial number of times after tracker failed. EAO combines accuracy and 

robustness. Firstly, all sequences in the benchmark are classified by the total number of video sequences 

𝑁𝑠. Next, calculate the number of video frames that are tracked accurately. The EAO value of video with 

number 𝑁𝑠, can be obtained as: 
 

𝐸𝐴𝑂 =
1

𝑁𝑠

∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑁𝑠

𝑣=1

 (13) 

 

The EAO value used for ranking trackers is the average EAO value for each frame. The detailed 

comparisons are listed in Table 4. Besides, we also count the average FPS while testing. 
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Table 4 shows the comparison results of our tracker with the current mainstream trackers, including 

the deep learning tracker TCNN [46], the correlation filtering tracker CCOT [47], and the mainstream 

Siamese network trackers, where Siamese network-based trackers include SiamRPN [11], DaSiamRPN 

[24], SiamMask [25] and SiamRCNN [9]. We observe that the proposed tracker SiamSERPN is the 

highest score of 0.479 in EAO but ranks second in accuracy and robustness, which are 0.641 and 0.191, 

respectively. Compared with SiamRCNN, our tracker lags 1% and 10% behind in accuracy and 

robustness. We think the core reason is that SiamRCNN, as a two-stage tracker, adopts the bounding box 

regression and the re-detection strategies, which improve the performance and stability of SiamRCNN. 

Still, a coin has two sides. These two strategies severely slow down SiamRCNN due to heavy 

hyperparameters. To the best of our knowledge, SiamRCNN’s average speed does not exceed 25 FPS, 

while our tracker is close to 70 FPS on VOT2016 due to the lightweight backbone (Fig. 5). 

Our tracker leads in all three metrics compared to SiamMask, which use standard RPN. Especially, 

our tracker achieves substantial gains of 14% in EAO, due to the fact that SiamMask introduces RPN 

from detection without any modification. In contrast, benefiting from SERPN, our tracker SiamSERPN 

scored 0.191 on robustness, 19% ahead of SiamMask. We believe the core reason is that the DIoU metric 

and DIoU loss are utilized in SERPN, both of which have a better ability than the original metric and loss 

function used in standard RPN to handle complex scenes in visual tracking. It is worth noting that 

SiamMask runs at 55 FPS [25] on the VOT2016 benchmark, while our SiamSERPN runs at close to 70 

FPS, which means that the lightweight network as the backbone can provide substantial advancements 

in speed. 

 

Table 4. Comparisons on VOT2016  

Trackers Accuracy Robustness EAO 

MLDF 0.490 0.233 0.311 

SSAT 0.577 0.291 0.321 

TCNN 0.554 0.268 0.325 

CCOT 0.539 0.238 0.331 

SiamFC 0.568 0.262 0.387 

SiamRPN 0.618 0.238 0.393 

DaSiamRPN 0.612 0.221 0.411 

SiamMask 0.623 0.233 0.412 

SiamRCNN 0.645 0.172 0.460 

SiamSERPN 0.641 0.191 0.479 

The best results are highlighted in red, and the second-best results are blue fonts. SiamMask is the RPN-based version. 

 

  

(a) (b) 

Fig. 5. Excepted average overlap performance on (a) VOT2016 and (b) VOT2018 datasets.  

Specially, SiamFCpp is SiamFC++ and SiamMask_box is the RPN-based SiamMask. 

 

4.3.2 VOT2018 dataset 

We likewise evaluated our tracker on the VOT2018 benchmark [16], containing 60 public video 

sequences with several challenging topics, including fast motion, occlusion, etc. As the following 
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generation to VOT2016, VOT2018 also uses the three previous official metrics: accuracy, robustness, 

and EAO as evaluation methods. 

As shown in Table 5, we compare the current mainstream trackers, including the deep learning tracker 

LSART [48], CPT [49] and the anchor-free method SiamFC++ [31]. Our tracker achieves the raking 

second only to SiamRCNN in VOT2018, where we are slightly behind SiamRCNN by 1.5% in accuracy 

and 1.8% in EAO, but we are the same as SiamRCNN in robustness. Meanwhile, we lag the anchor-free 

tracker SiamFC++ by 17% in robustness, we think the reason is that quality evaluation branch proposed 

by SiamFC++ greatly helps it maintain stability. The lack of a quality evaluation branch is a weakness of 

our tracker, which results in a less robustness score for our tracker than SiamFC++. Nevertheless, our 

SiamSERPN still achieves a 7.4% improvement in accuracy over it. 

We set DaSiamRPN which use the standard RPN as the benchmark method to explore the differences 

between the proposed SERPN and RPN when testing. In Table 5, our method significantly improves 

more than 5.2% and 19% in accuracy and EAO, respectively. The core reason is that our proposed SERPN 

is more capable of performing in the face of complex scenes than RPN used in previous trackers. Besides, 

our tracker yields substantial gains of nearly 35% on robustness, which is the layer-wise feature aggregation 

to single RPN advantage. 

 

Table 5. Comparisons with the mainstream trackers in terms of EAO, robustness (failure rate), and 

accuracy on the VOT2018 benchmarks 

Trackers Accuracy Robustness EAO 

CFCT 0.505 0.258 0.300 

SRCT 0.520 0.290 0.310 

LSART 0.495 0.218 0.323 

DLSTpp 0.543 0.224 0.325 

DaSiamRPN 0.569 0.337 0.326 

SA_Siam 0.566 0.258 0.337 

CPT 0.506 0.239 0.339 

SiamFC++ 0.556 0.183 0.400 

SiamRCNN 0.609 0.220 0.408 

SiamSERPN 0.598 0.220 0.401 

The best results are highlighted in red, and the second-best results are blue fonts. DaSiamRPN is our baseline tracker in the 

competition. 

 

4.3.3 GOT-10k dataset 

GOT-10k is a large diversity dataset recently released by CAS for the same object tracking in the field. 

It contains more than 10,000 video sequences of real-world moving objects. At the same time, the 

protocol guarantees the fairness of the trackers, and all methods use the same training data provided by 

the dataset. In particular, there are zero overlaps between the training and testing datasets classes. The 

tracker authors need to train on the officially given dataset, test the methods and upload the results to the 

official website. The evaluation is performed automatically through the official website. The AO 

represents the average overlaps between the estimated bounding box and the ground-truth boxes. The 

SR0.5 denotes the rate of successfully tracked frames whose overlap exceeds 0.5, while SR0.75 

represents the rate of successfully tracked frames whose overlap exceeds 0.75. 

As the details are listed in Table 6, we focus on the Siamese network trackers and deep learning ones 

[50, 51]. We achieve the second-best score in the GOT-10k benchmark. Compared to the two-stage 

tracker SiamRCNN, our tracker is weaker than it except for the speed metric. We believe the core reason 

is that the GOT-10k benchmark contains a large number of wild scenes, which are more complex than 

other visual benchmarks. Since our proposed SERPN block uses a lightweight network SENet, the 

proposed tracker is not strong enough to deal with complex scenes in the wild. Although we introduce 

DIoU to compensate for this phenomenon, it is still a weakness of our tracker. Despite this, our tracker 
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still achieves the second-best result compared to other trackers while running almost 27 times faster than 

SiamRCNN. 

 

Table 6. Comparisons our tracker with mainstream trackers on GOT-10k 

Trackers mAO mSR0.5 mSR0.75 FPS 

DSiam 0.417 0.461 0.149 3.78 

SiamFCv2 0.434 0.481 0.19 19.6 

SA_Siam_P 0.445 0.491 0.165 25.4 

DeepSTRCF 0.449 0.481 0.169 1.07 

DaSiamRPN 0.444 0.536 0.22 134.4 

THOR 0.447 0.538 0.204 1 

SiamSERPN 0.604 0.726 0.472 75.45 

SiamRCNN 0.649 0.728 0.593 2.79 

The best results are highlighted in red, and the second-best results are blue fonts. 

 

Moreover, compared to the benchmark tracker DaSiamRPN, our SERPN significantly improves the 

scores by 27%, 26%, and 54%, relatively for AO, SR0.5, and SR0.75. We believe that GOT-10k contains 

a large number of general field objects and that these scenarios are more complex and challenging. The 

RPN used by DaSiamRPN is incapable of handling a large number of complex cases, which results in 

much weaker than our SiamSERPN. However, it is worth noting that DaSiamRPN’s speed of 134 FPS is 

the highest-ranked tracker. Although the proposed tracker is only half as fast as DaSiamRPN, it still 

achieves 75 FPS and far exceeds the 25 FPS. We observe that our SiamSERPN is competitive in both 

performance and speed types of metrics, which shows that our tracker is able to find a balance between 

speed and performance. 

 

4.3.4 Summary of comparison experiments 

After experiments on three large visual tracking benchmarks, the proposed tracker achieved 

competitive scores while running at approximately 70–75 FPS. On the VOT series benchmark, our 

trackers achieved competitive scores of 0.479 and 0.401, respectively. Especially on the VOT2016 

benchmark, the proposed tracker SiamSERPN obtains the best performance, which adequately 

demonstrates that the proposed tracker equipped with SERPN blocks can achieve higher performance 

than the mainstream trackers that utilize the standard RPN. On the GOT-10k benchmark, SiamSERPN 

achieves second place in all indicators, which means that it performs better than high-speed trackers and 

is more efficient than high-performance trackers. One of the FPS scores is 75, substantially more than 25 

FPS, which indicates that the proposed method is the real-time tracker. Finally, by combining the results 

of the VOT series benchmark with the GOT-10k benchmark, our tracker can achieve a balance of both 

performance and speed. 

 

4.4 Ablation Study 

We conduct ablation experiments on the VOT-2016 benchmark. We first explore multi-level 

aggregation, in which variants all use the standard RPN. After that, we test the changes carry by IoU, 

DIoU, and SERPN blocks, respectively. 

 

4.4.1 Multi-level aggregation 

We conduct ablation experiments on multi-layer aggregation to explore the role of different level 

features and the effect of multi-layer feature aggregation. We design multiple variants of the proposed 

SiamSERPN. At first, we do not output features at any level, similar to SiamFC, which outputs features 

directly through the convolution of two identical and shared parameter networks for object tracking. 
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However, compared to the benchmark tracker SiamRPN, the lack of RPN assistance leads to severe 

performance loss, despite the stronger feature extraction capability of the deep network MobileNetV2. 

For the variant that uses the single SERPN block, we adopt the original IoU metric in the classification 

branch and a standard smooth-ln loss function in the regression branch for bounding box regression. 

When the Siamese subnetwork feeds the extracted features to the single SERPN block, first, the standard 

RPN generates five scales of anchor boxes. Then the classification branch estimates whether the anchor 

boxes contain the object based on the IoU value (following SiamRPN, the IoU values greater than 0.6 

are positive samples). Meanwhile, the regression branch performs bounding box regression on these 

positive samples using the smooth Ln-norm loss to obtain object position. Finally, the features are fed 

into the squeeze and excitation section for channel reweighting to improve the performance of the tracker. 

Although the use of single-layer features can lead to some performance gains, we observe that the 

performance of these variants is basically equivalent whether the SERPN blocks are placed on conv3, 

conv5, or conv7. Therefore, the performance gain from a single SERPN block is limited. Compared to 

single-layer features, performance is improved when two-layer features are aggregated, with conv3 and 

conv7 aggregation performing the best, improving by 1% over the baseline tracker SiamRPN. We believe 

this is because the latter SERPN block can further refine the output of the features from the previous 

block. As a result, after aggregating three layers of features, our tracker gradually achieves the best results. 

 

4.4.2 Classification and regression 

The classification task and the regression task play a key role in the performance of the tracker, but 

previous Siamese network trackers do not pay sufficient attention to them. We adopt the DIoU metric 

and DIoU loss in the classification branch and regression branch of RPN to distinguish foreground-

background and bounding box regression, respectively. In Table 7, DIoU, as metric and loss function, 

leads over IoU metric and the smooth Ln-norm loss in the context of three-layer features aggregation. 

However, we observe that the improvement is not significant. We believe the core reason is that the single 

improvement is too slight to impact the tracker, which lacks the ability to handle challenging scenarios.   

 

Table 7. Ablation study of the proposed tracker on VOT2016 

Backbone L3 L5 L7 I/S D/DL SERPN EAO 

AlexNet    ✓   0.397 

MobileNet    ✓   0.377 

 ✓   ✓   0.383 

  ✓  ✓   0.384 

   ✓ ✓   0.384 

 ✓ ✓  ✓   0.397 

  ✓ ✓ ✓   0.399 

 ✓  ✓ ✓   0.400 

MobileNet ✓ ✓ ✓ ✓   0.403 

 ✓ ✓ ✓  ✓  0.407 

 ✓ ✓ ✓ ✓  ✓ 0.411 

MobileNet ✓ ✓ ✓  ✓ ✓ 0.479 

L3, L5, and L7 represent conv3, conv5, and conv7, respectively. I/S and D/DL represent IoU metric/smooth Ln-norm loss 

and DIoU/DIoU loss. SERPN denotes the RPN using squeeze and excitation operations. We set SiamRPN as the benchmark 

tracker, which uses AlexNet as the backbone. Besides, MobileNet represents MobileNetV2. 

 

4.4.3 RPN with squeeze and excitation 

We simply operate the squeeze and excitation operation for the RPN in this variant and do not use the 

DIoU metric and DIoU loss to explore the effects of SERPN. As can be seen in Table 7, although feature 

aggregation using SERPN blocks alone can further improve the performance of the tracker, the degree 
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of performance improvements is not significant. We believe the core reason is similar to that described 

previously: the limited performance increasing from a single improvement. 

 

4.4.4 Summary of ablation study 

Finally, we compare the proposed method SiamSERPN with all variants and the benchmark tracker, 

and we find a great performance improvement. Because the complete SERPN block adopts the advanced 

DIoU for foreground-background classification and bounding box regression. Specifically, the DIoU 

metric can handle the relationship between the predicted bounding box and the ground-truth box in the 

classification task, which is easily ignored by the IoU metric. DIoU as the loss function can jointly 

optimize the coordinates of the predicted bounding box during bounding box regression, resulting in 

more accurate location information. Based on the complete SERPN block, utilizing the deep architecture 

of MobileNetV2, multi-layers allow features to be aggregated and output final refined features for peak 

performance. After combining all the improvements, our tracker achieves the best possible performance 

that demonstrate proposed improvements are effective and synergistic. 

 

5. Conclusion 

In this paper, we propose a visual tracking framework that can balance performance and speed named 

SiamSERPN. It consists of a Siamese subnetwork and multiple proposed SERPN blocks. The former 

utilizes two identical lightweight MobileNetV2 as the backbone to achieve efficiency. The latter consists 

of the standard RPN and squeeze-excitation section to compensate for the performance loss caused by 

the lightweight backbone. Specifically, the proposed SERPN block improves the performance via two 

main strategies. One is to reweight the rough features extracted from the backbone by squeezing and 

excitation to retain the valuable features and filter the unnecessary ones. The other is to introduce DIoU 

for foreground-background classification and bounding box regression to fix the deficiencies of 

traditional classification metric and regression loss function adopted in standard RPN. Extensive 

experiments on multiple tracking benchmarks show that our trackers achieve competitive performance 

while operating efficiently. It scores 0.479 on the VOT2016 benchmark, which is 4% ahead of the second 

place. Despite being second on both the VOT2018 and GOT-10k benchmarks, it runs at 70 FPS and 75 

FPS, respectively, which significantly exceeds the minimum speed requirement of real-time performance 

(25 FPS). Being more efficient than other anchor-based trackers is the advantage of our SiamSERPN. 

Still, the proposed method is also essentially an anchor-based tracker, which inherently introduces many 

hyperparameters and complexity. Therefore, SiamSERPN still has the potential for further speedup, 

which leads to a gap between SiamSERPN and practical applications. In the future, we will focus on 

applying lightweight networks to anchor-free trackers, which only use the expressive power of fully 

convolutional networks to achieve visual tracking, leading this type of trackers more efficient and taking 

up fewer resources than anchor-based ones. We expect future work might be able to narrow the gap 

between academic methods and practical applications in object tracking field. 
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