31 research outputs found

    De Novo nucleic acids: a review of synthetic alternatives to DNA and RNA that could act as bio-information storage molecules

    Get PDF
    Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson-Crick pairing rules. This manuscript will examine in detail the physical and chemical properties of these synthetic nucleic acid analogues, in particular on their abilities to serve as conveyors of genetic information. If life exists elsewhere in the universe, will it also use DNA and RNA

    The way forward for the origin of life: prions and prion-like molecules first hypothesis

    Get PDF
    In this paper the hypothesis that prions and prion-like molecules could have initiated the chemical evolutionary process which led to the eventual emergence of life is reappraised. The prions first hypothesis is a specific application of the protein-first hypothesis which asserts that protein-based chemical evolution preceded the evolution of genetic encoding processes. This genetics-first hypothesis asserts that an “RNA-world era” came before protein-based chemical evolution and rests on a singular premise that molecules such as RNA, acetyl-CoA, and NAD are relics of a long line of chemical evolutionary processes preceding the Last Universal Common Ancestor (LUCA). Nevertheless, we assert that prions and prion-like molecules may also be relics of chemical evolutionary processes preceding LUCA. To support this assertion is the observation that prions and prion-like molecules are involved in a plethora of activities in contemporary biology in both complex (eukaryotes) and primitive life forms. Furthermore, a literature survey reveals that small RNA virus genomes harbor information about prions (and amyloids). If, as has been presumed by proponents of the genetics-first hypotheses, small viruses were present during an RNA world era and were involved in some of the earliest evolutionary processes, this places prions and prion-like molecules potentially at the heart of the chemical evolutionary process whose eventual outcome was life. We deliberate on the case for prions and prion-like molecules as the frontier molecules at the dawn of evolution of living systems

    Electron induced chemistry: a new frontier in astrochemistry

    Get PDF
    The commissioning of the ALMA array and the next generation of space telescopes heralds the dawn of a new age of Astronomy, in which the role of chemistry in the interstellar medium and in star and planet formation may be quantified. A vital part of these studies will be to determine the molecular complexity in these seemingly hostile regions and explore how molecules are synthesised and survive. The current hypothesis is that many of these species are formed within the ice mantles on interstellar dust grains with irradiation by UV light or cosmic rays stimulating chemical reactions. However, such irradiation releases many secondary electrons which may themselves induce chemistry. In this article we discuss the potential role of such electron induced chemistry and demonstrate, through some simple experiments, the rich molecular synthesis that this may lead to

    Ariel – a window to the origin of life on early earth?

    Get PDF
    Is there life beyond Earth? An ideal research program would first ascertain how life on Earth began and then use this as a blueprint for its existence elsewhere. But the origin of life on Earth is still not understood, what then could be the way forward? Upcoming observations of terrestrial exoplanets provide a unique opportunity for answering this fundamental question through the study of other planetary systems. If we are able to see how physical and chemical environments similar to the early Earth evolve we open a window into our own Hadean eon, despite all information from this time being long lost from our planet’s geological record. A careful investigation of the chemistry expected on young exoplanets is therefore necessary, and the preparation of reference materials for spectroscopic observations is of paramount importance. In particular, the deduction of chemical markers identifying specific processes and features in exoplanetary environments, ideally “uniquely”. For instance, prebiotic feedstock molecules, in the form of aerosols and vapours, could be observed in transmission spectra in the near future whilst their surface deposits could be observed from reflectance spectra. The same detection methods also promise to identify particular intermediates of chemical and physical processes known to be prebiotically plausible. Is Ariel truly able to open a window to the past and answer questions concerning the origin of life on our planet and the universe? In this paper, we discuss aspects of prebiotic chemistry that will help in formulating future observational and data interpretation strategies for the Ariel mission. This paper is intended to open a discussion and motivate future detailed laboratory studies of prebiotic processes on young exoplanets and their chemical signatures

    Mars: new insights and unresolved questions

    Get PDF
    Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include: – high escape rates of early Mars’ atmosphere, including loss of water, impact present-day habitability; – putative fossils on Mars will likely be ambiguous biomarkers for life; – microbial contamination resulting from human habitation is unavoidable; and – based on Mars’ current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.Some of the outstanding questions are:– which interpretation of the hemispheric dichotomy of the planet is correct; – to what degree did deep-penetrating faults transport subsurface liquids to Mars’ surface; – in what abundance are carbonates formed by atmospheric processes; – what properties of martian meteorites could be used to constrain their source locations; – the origin(s) of organic macromolecules; – was/is Mars inhabited; – how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth; – how can we ensure that humans and microbes form a stable and benign biosphere; and – should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?Studies of Mars’ evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space

    The Landscape of the Emergence of Life

    No full text
    Is it unrealistic to presuppose that all of the steps that could lead to the formation of life could occur in one setting?[...

    The Landscape of the Emergence of Life

    No full text
    This paper reports on the various nuances of the origins of life on Earth and highlights the latest findings in that arena as reported at the Network of Researchers on Horizontal Gene Transfer and the Last Universal Common Ancestor (NoR HGT and LUCA) which was held from the 3–4th November 2016 at the Open University, UK. Although the answers to the question of the origin of life on Earth will not be fathomable anytime soon, a wide variety of subject matter was able to be covered, ranging from examining what constitutes a LUCA, looking at viral connections and “from RNA to DNA”, i.e., could DNA have been formed simultaneously with RNA, rather than RNA first and then describing the emergence of DNA from RNA. Also discussed are proteins and the origins of genomes as well as various ideas that purport to explain the origin of life here on Earth and potentially further afield elsewhere on other planets

    The Landscape of the Emergence of Life

    No full text
    Is it unrealistic to presuppose that all of the steps that could lead to the formation of life could occur in one setting?[...

    Horizontal Gene Transfer and Its Part in the Reorganisation of Genetics during the LUCA Epoch

    No full text
    Currently there are five known mechanisms of horizontal gene transfer (HGT): transduction, conjugation, transformation, gene transfer agents and membrane vesicle transfer. The question here is: what part did HGT play in the reorganisation of genetics during the last universal common ancestor (LUCA) epoch? LUCA is a construct to explain the origin of the three domains of life; namely Archaea, Bacteria and Eukarya. This editorial offers a general introduction to the relevance and ultimate significance of HGT in relation to the LUCA. [...
    corecore