7 research outputs found

    New flavan and alkyl alpha, beta-lactones from the stem bark of Horsfieldia superba.

    Get PDF
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL)

    SRS06, a new semisynthetic andrographolide derivative with improved anticancer potency and selectivity, inhibits nuclear factor-kB nuclear binding in the A549 non-small cell lung cancer cell line

    Get PDF
    Background: Andrographolide has been reported with anticancer and anti-inflammatory properties through the inhibition of the activity of signaling molecules such as v-Src, nuclear factor-κB (NF-κB), STAT3, and PI3K. NF-κB has been proven to promote cancer cell survival, and targeting this pathway will halt the growth of cancer cells. Efforts have been made to produce semisynthetic derivatives of andrographolide with improved anticancer potency and selectivity. Subsequently, the effect of a selected derivative, 3,14,19-tripropionylandrographolide (SRS06), was tested for its action against NF-κB. Methods: Screening against 60 US National Cancer Institute (NCI) human cancer cell lines representing leukemia and non-small cell lung (NSCL), colon, CNS, melanoma, ovarian, renal, prostate, and breast cancers was performed to determine the tumor type selectivity and potency of SRS06. Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and sulforhodamine B assays were used to determine the in vitro anticancer activity, while Western blot studies were performed to ascertain the inhibitory effect of SRS06 on the NF-κB signaling cascade. The TransAM™ p65 assay kit was used to determine NF-κB p65 DNA binding activity in the NSCL cancer cell line A549. Results: From the NCI screening, SRS06 was found to exhibit potent growth-inhibitory effects on multiple cancer cell lines with 10-fold lower 50% growth inhibition (GI50) compared with andrographolide. It was also discerned that the compound preferentially targeted melanoma, CNS, renal, colon, ovarian, prostate, and NSCL cancer cell lines. The DNA fragmentation assay indicated that the main mode of cell death of SRS06-treated A549 cells was via apoptosis. At 5 µmol/l the compound decreased NF-κB protein expression and caused a significant reduction in the nuclear p65 DNA binding activity. Conclusion: SRS06 displayed improved anticancer selectivity and potency when compared with andrographolide. We alluded its anticancer activity to its effect of inhibiting NF-κB nuclear binding

    Extraction methods of butterfly pea (<i>Clitoria ternatea</i>) flower and biological activities of its phytochemicals

    No full text
    Clitoria ternatea or commonly known as ‘Butterfly pea’ has been used traditionally in Ayurvedic medicine in which various parts of the plants are used to treat health issues such as indigestion, constipation, arthritis, skin diseases, liver and intestinal problems. The flowers of C. ternatea are used worldwide as ornamental flowers and traditionally used as a food colorant. This paper reviews the recent advances in the extraction and biological activities of phytochemicals from C. ternatea flowers. The application of maceration or ultrasound assisted extraction greatly increased the yield (16–247% of increase) of phytochemicals from C. ternatea flowers. Various phytochemicals such as kaempferol, quercetin and myricetin glycosides as well as anthocyanins have been isolated from C. ternatea flowers. Clitoria ternatea flower extracts were found to possess antimicrobial, antioxidant, anti-inflammatory, cytotoxic and antidiabetic activities which are beneficial to human health. Clitoria ternatea flower is a promising candidate for functional food applications owing to its wide range of pharmacotherapeutic properties as well as its safety and effectiveness

    Antioxidant, cytotoxic, and antibacterial activities of<i> Clitoria ternatea</i> flower extracts and anthocyanin-rich fraction

    No full text
    Clitoria ternatea flower is a traditional medicinal herb that has been used as a natural food colourant. As there are limited studies on investigating the bioactivities of the anthocyanin-rich fraction of Clitoria ternatea flower, this study aimed to determine an efficient column chromatography method to obtain the anthocyanin-rich fraction from this flower and characterise its composition, antioxidant, antibacterial, and cytotoxic activities. Amberlite XAD-16 column chromatography was more efficient in enriching the total anthocyanin content (TAC) of the fraction with the highest TAC to total phenolic content (TPC) ratio of 1:6 than that using C18-OPN. A total of 11 ternatin anthocyanins were characterised in the anthocyanin-rich fraction by LC–MS analysis. The antioxidant activity of the anthocyanin-rich fraction was more potent in the chemical-based assay with an IC(50) value of 0.86 ± 0.07 mg/mL using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay than cellular antioxidant assay using RAW 264.7 macrophages. In vitro cytotoxicity assay using human embryonic kidney HEK-293 cell line showed the anthocyanin-rich fraction to be more toxic than the crude extracts. The anthocyanin-rich fraction had more potent antibacterial activity than the crude extracts against Bacillus cereus, Bacillus subtilis, and Escherichia coli. The anthocyanin-rich fraction of C. ternatea has the potential to be used and developed as a functional food ingredient or nutraceutical agent

    Xanthones from calophyllum gracilipes and their cytotoxic activity

    Get PDF
    Extraction and chromatographic isolation of the hexane, chloroform and methanol extracts of stem bark of Calophyllum gracilipes has led to the isolation of a new xanthone, gracixanthone (1) and the known zeyloxanthanone (2) and trapezifolixanthone (3) together with three common sterols, namely stigmasterol, friedelin and lupeol. The structures of the compounds were elucidated and established by spectroscopic analysis and compared with the spectral data from literature. The cytotoxicity of the compounds was evaluated and zeyloxanthanone (2) exhibited strong activity towards five cell lines with IC50 values ranging at 8.00-26.00 μΜ

    Acylated and non-acylated anthocyanins as antibacterial and antibiofilm agents

    No full text
    International audienceAbstractNatural products have served as an essential source of medicinal compounds in drug discovery, with their high abundance in nature and structural complexity being beneficial for various biological activities. Anthocyanins are a natural food colourant that belongs to the flavonoid group of compounds responsible for the colour of various fruits, vegetables, and flowers. There has been a growing interest in these compounds, especially for their health benefits. Antimicrobial resistance is on the rise, making the prognosis for bacterial infection treatment rather difficult. The discovery of alternative agents and treatment approaches is needed. Many in vitro and some in vivo studies demonstrated the potential effects of anthocyanins or their fraction from various natural sources to prevent and treat bacterial infections and biofilm formation. This review reports the recent literature and focuses on the potential role of anthocyanins and their acylation or functional groups for antibacterial and antibiofilm activities and their use as potential antibiotic substitutes or adjuvants. Their possible mechanism of action and prospects of their uses are also discussed.</jats:p
    corecore