14 research outputs found

    Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach

    Full text link
    A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile

    Robust numerical computation of the 3D scalar potential field of the cubic Galileon gravity model at solar system scales

    Get PDF
    Direct detection of dark energy or modified gravity may finally be within reach due to ultrasensitive instrumentation such as atom interferometry capable of detecting incredibly small scale accelerations. Forecasts, constraints and measurement bounds can now too perhaps be estimated from accurate numerical simulations of the fifth force and its Laplacian field at solar system scales. The cubic Galileon gravity scalar field model (CGG), which derives from the DGP braneworld model, describes modified gravity incorporating a Vainshtein screening mechanism. The nonlinear derivative interactions in the CGG equation suppress the field near regions of high density, thereby restoring general relativity (GR) while far from such regions, field enhancement is comparable to GR and the equation is dominated by a linear term. This feature of the governing PDE poses some numerical challenges for computation of the scalar potential, force and Laplacian fields even under stationary conditions. Here we present a numerical method based on finite differences for solution of the static CGG scalar field for a 2D axisymmetric Sun-Earth system and a 3D Cartesian Sun-Earth-Moon system. The method relies on gradient descent of an integrated residual based on the normal attractive branch of the CGG equation. The algorithm is shown to be stable, accurate and rapidly convergent toward the global minimum state. We hope this numerical study, which can easily be extended to include smaller bodies such as detection satellites, will prove useful to future measurement of modified gravity force fields at solar system scales

    Direct Probe of Dark Energy Interactions with a Solar System Laboratory

    Get PDF
    In this NIAC (NASA Innovative Advanced Concepts) study, we embrace the challenge of direct detection of the galileon dark energy field in the Vainshtein model. We developed a mission concept to directly measure the galileon field using the solar system as a laboratory. The experiment scheme involves precise measurements of the trace of the total scalar force gradient tensor. A tetrahedral constellation off our spacecraft measures the "local" traces while orbiting about 1 AU (Astronomical Unit) away from the Sun and faraway from planets (Figure 1). The trace measurement is insensitive to the much stronger gravity field which satisfies the inverse square law and thus is traceless. Atomic test masses and atom interferometer measurement techniques are used as precise drag-free inertial references while laser ranging interferometers are employed to connect among atom interferometer pairs in spacecraft for the differential gradient force measurements. We conclude that such a mission is scientifically and technologically feasible. We show that a mission of 3-year measurement time would be able to provide high confidence statements (over 3 standard deviations) about the existence and strength of the cubic galileon field of the Sun. In addition, such a mission would also provide rich and diverse scientific data for testing any gravitational theory in general beyond the Newtonian gravity, hunting for ultra-light fields of dark matter, and detecting gravitational waves in the mid-frequency band between those of LIGO (Laser Interferometer Gravitational-Wave Observatory) and LISA (Laser Interferometer Space Antenna). For these reasons, we will term the mission concept Gravity Observation and Dark energy Detection Explorer in the Solar System (GODDESS)

    Induction of Group IVC Phospholipase A2 in Allergic Asthma: Transcriptional Regulation by TNF-α in Bronchoepithelial Cells

    Get PDF
    Airway inflammation in allergen-induced asthma is associated with eicosanoid release. These bioactive lipids exhibit anti- and pro-inflammatory activities with relevance to pulmonary pathophysiology. We hypothesized that sensitization/challenge using an extract from the ubiquitous fungus, Aspergillus fumigatus (Af), in a mouse model of allergic asthma would result in altered phospholipase gene expression, thus modulating the downstream eicosanoid pathway. We observed the most significant induction in the group IVC phospholipase A2 (cPLA2γ or PLA2G4C). Our results infer that Af extract can induce cPLA2γ levels directly in eosinophils while induction in lung epithelial cells is most likely a consequence of TNF-α secretion by Af-activated macrophages. The mechanism of TNF-α-dependent induction of cPLA2γ gene expression was elucidated through a combination of promoter deletions, ChIP and overexpression studies in human bronchoepithelial cells, leading to the identification of functionally relevant CRE, NF-κB and E-box promoter elements. ChIP analysis demonstrated that RNA polymerase II, c-Jun/ATF-2, p65/p65 and USF1/USF2 complexes are recruited to the cPLA2γ enhancer/promoter in response to TNF-α with overexpression and dominant negative studies implying a strong level of cooperation and interplay between these factors. Overall, our data link cytokine-mediated alterations in cPLA2γ gene expression with allergic asthma and outline a complex regulatory mechanism

    The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells.</p> <p>Methods</p> <p>Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography.</p> <p>Results</p> <p>We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs) were partially blocked by integrin α6β1 antibodies (<it>P </it>< 0.01). Wortmannin, a specific phosphatidylinositol kinase (PI3K) inhibitor that reverses the effect of HAb18G/CD147 on the regulation of intracellular Ca<sup>2+ </sup>mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (<it>P </it>< 0.05). Importantly, no additive effect between Wortmannin and α6β1 antibodies was observed, indicating that α6β1 and PI3K transmit the signal in an upstream-downstream relationship.</p> <p>Conclusion</p> <p>These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.</p
    corecore