18 research outputs found

    alpha-Glucosidase inhibitory activity and cytotoxic effects of some cyclic urea and carbamate derivatives

    Get PDF
    The inhibitory activities of selected cyclic urea and carbamate derivatives (1-13) toward alpha-glucosidase (alpha-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against alpha-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl) carbamate (12) with IC50 = 49.85 +/- 0.10 mu M. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c] pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50 = 83.41 +/- 1.60 mu M). Cyclic ureas and carbamates showed promising anti-alpha-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity

    μ-opioid/D2 dopamine receptor pharmacophore containing ligands: Synthesis and pharmacological evaluation

    Get PDF
    Herein, the synthesis and pharmacological evaluation of 13 novel compounds, designed as potential heterobivalent ligands for μ-opioid receptor (MOR) and dopamine D2 receptors (D2DAR), are reported. The compounds consisted of anilido piperidine and N-aryl piperazine moieties, joined by a variable-length methylene linker. The two moieties represent MOR and D2DAR pharmacophores, respectively. The synthesis encompassed four steps, securing the final products in 28–42 % overall yields. The approach has a considerable synthetic potential, providing access to various related structures. Pharmacological tests involved in vitro competitive assay for D2DAR using [3H] spiperon, as a standard radioligand, and in vivo antinociceptive tests for MOR. The measured dopamine affinities were modest to low, while antinociceptive activity was completely absent. Therefore, the compounds of the general structure prepared in this research are unlikely to be useful as opioid–dopamine receptor heterobivalent ligands

    Design, synthesis and pharmacological evaluation of N-{4-[2-(4-aryl-piperazin-1-yl)-ethyl]-phenyl}-arylamides

    Get PDF
    5HT1A receptor targeting drugs have been used as the treatment for the many neuropsychiatric disorders, such as schizophrenia and depression. As a part of ongoing research, we designed series of new compounds that share arylpiperazine common structural motif with the 5HT1A receptor ligand aripiprazole. Receptor-ligand interactions were determined by the molecular docking simulations, revealing the positive impact of the phenyl substitution in the arylpiperazine part of the molecules. Nine selected compounds were synthesized in four reaction steps in high overall yields (59-73%). In vitro pharmacological evaluation of the synthesized compounds revealed three compounds (5b, 6b and 6c) with high 5HT1A binding affinity, comparable with aripiprazole (Ki 12.0, 4.8, 12.8, 5.6 nM, respectively). Compounds from b series, 5b and 6b, possess 2-methoxyphenyl substituents, while 6c possess 2,3-dichlorophenyl substituent in the arylpiperazine part of the molecule. The pharmacological results are therefore in accordance with the molecular docking simulations thus proving the rational design. Compounds 5c, 6b and 6c can be considered as the candidates for further evaluation as new, potential antidepressants

    Synthesis, computational and pharmacological evaluation of novel N-{4-[2-(4-aryl-piperazin-1-yl)ethyl]phenyl}-arylamides

    Get PDF
    Serotonin, or 5-hydroxytryptamine (5-HT), is a biogenic amine most noted as a neurotransmitter, an activator of the utmost subtype family of G-protein- coupled receptors (GPCR). Drugs targeting 5-HT1A and other 5-HT receptors treat central nervous system diseases such as schizophrenia and depression. Recent advances in serotonin receptor structure research gave us several crystal 5-HT1A receptor structures, most notably 5-HT1A bound to the antipsychotic drug aripiprazole (Abilify®). This discovery prompted us to evaluate a series of newly synthesized ligands for serotonergic activity since those arylpiperazine derivatives share minimal general structure with aripiprazole. The results of molecular docking analysis of unsubstituted starting substances encouraged us to propound further modifications of the tail and head parts of the parent molecules to maximize receptor binding affinity. Intrigued by the results of molecular analysis, all foreseen derivatives were synthesized. The pharmacological activity of all nine (5a and 6a are synthesized previously) compounds was assessed by the in vitro tests and in silico pharmacokinetics predictions for the most promising candidates. All tested ligands have improved affinity compering to parent compounds (10a and 11a), 8b and 9b expressed the best pharmacological profile with an improved binding affinity toward serotonin 5-HT1A receptors (Ki 12.1 and 4.8 nM, respectively)

    Development of fluorinated indanone-based derivatives for the imaging of monoamine oxidase B via positron emission tomography

    Get PDF
    Ziel/Aim The monoamine oxidase B (MAO B) isoenzyme is known to be involved in the oxidative deamination of biogenic amines. While the use of MAO B inhibitors is already well-established for the treatment of Parkinson’s disease, recent reports suggest its involvement in certain types of brain tumors.1 We herein aim at the synthesis and preclinical evaluation of fluorinated indanone-based derivatives targeting MAO B in the brain via positron emission tomography (PET). Methodik/Methods A small series of fluorinated indanone derivatives was obtained via the O-alkylation or esterification starting with the commercially available 6-hydroxy-2,3-dihydro-1H-inden-1-one in one or two steps. Binding affinities towards the human MAO isoenzymes were estimated in vitro by radioligand displacement. HL126 was selected for radiofluorination via its corresponding boronic acid pinacol ester. In vitro autoradiography of [18F]HL126 was performed in mice brain slices. In vivo evaluation of [18F]HL126 in CD-1 mice was carried out and metabolism studies were performed in plasma and brain samples via radio-HPLC. Ergebnisse/Results The fluorinated indanone derivatives were synthesized in yields ranging from 65-89 %. The fluorophenyl ether derivative, HL126, was further selected for radiofluorination based on its high binding affinity towards MAO B (Ki = 6.9 ± 5.3 nM). [18F]HL126 was obtained by an alcohol-enhanced copper-mediated approach via the corresponding boronic acid pinacol ester precursor with radiochemical yields of about 11 ± 3 %, high radiochemical purities (≥99 %) and molar activities in the range of 20 GBq/mmol. In vitro autoradiography showed a specific blockade with selective MAO-A/B inhibitors. PET/MRI analyses revealed that [18F]HL126 readily enters the brain. Some radiometabolites do cross the blood-brain barrier. Schlussfolgerungen/Conclusions Although metabolism studies with [18F] HL126 revealed the presence of radiometabolites in the brain, the high binding affinity towards MAO B and the pronounced selectivity in in vitro autoradiography studies encourage further derivatization of indanone-based scaffolds for targeting MAO B

    Antidiabetics: Structural Diversity of Molecules with a Common Aim

    No full text
    BACKGROUND: Diabetes mellitus type 2 (DMT2) is an endocrine disease of global proportions which is currently affecting 1 in 12 adults in the world, with still increasing prevalence. World Health Organization (WHO) declared this worldwide health problem, as an epidemic disease, to be the only non-infectious disease with such categorization. People with DMT2 are at increased risk of various complications and have shorter life expectancy. The main classes of oral antidiabetic drugs accessible today for DMT2 vary in their chemical composition, modes of action, safety profiles and tolerability. Methods: A systematic search of peer-reviewed scientific literature and public databases has been conducted. We included the most recent relevant research papers and data in respect to the focus of the present review. The quality of retrieved papers was assessed using standard tools. Results: The review highlights the chemical structural diversity of the molecules that have the common target-DMT2. So-called traditional antidiabetics as well as the newest and the least explored drugs include polypeptides and amino acid derivatives (insulin, glucagon-like peptide 1, dipeptidyl peptidase-IV inhibitors, amylin), sulfonylurea derivatives, benzylthiazolidine-2,4-diones (peroxisome proliferator activated receptor-gamma agonists/glitazones), condensed guanido core (metformin) and sugar-like molecules (alpha-glucosidase and sodium/glucose co-transporter 2 inhibitors). Conclusion: As diabetes becomes a more common disease, interest in new pharmacological targets is on the rise
    corecore