37 research outputs found

    The Use of Sulfasalazine in Atrophie Blanche

    Full text link
    Atrophie blanche can be a chronic condition for which there is no satisfactory treatment. Two patients with atrophie blanche who had not responded to various therapeutic modalities were given a trial of sulfasalazine 1 g three times daily. The ulcers healed within 3 months in both cases. In view of these positive results, patients should be treated with sulfasalazine to determine the efficacy of this drug in atrophie blanche.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65527/1/j.1365-4362.1990.tb02594.x.pd

    Exendin-4 Improves Blood Glucose Control in Both Young and Aging Normal Non-Diabetic Mice, Possible Contribution of Beta Cell Independent Effects

    Get PDF
    Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages.We treated 3-month and 20 to 22-month old C57/DBA mice with 10 nM/kg exendin-4 for 10 days with measurements of blood glucose and body weight. We performed OGTT and ITT to evaluate the glucose response and insulin sensitivity. Islet morphology and beta cell mass were measured by immuno-staining and beta cell proliferation was evaluated by BrdU incorporation and PCNA staining. Real-time PCR and western blot were used to measure protein changes in the liver tissue after exendin-4 treatment.Exendin-4 treatment improved glycemic control in both 3-month and 20 to 22-month old mice. In both groups of mice, the blood glucose lowering effect was independent of beta cell function as indicated by unchanged beta cell proliferation, insulin secretion or beta cell mass. Moreover, we found that exendin-4 treatment increased hepatic AKT and FOXO1 phosphorylation and inhibited glucose-6-phosphotase (G6P) and Phosphoenolpyruvate carboxykinase (PEPCK) expression in young mice, but this effect was attenuated in aging mice while the insulin sensitivity showed no change in the young group but significantly improved in aging mice.Based on these data, we conclude that the glucose lowering effect of exendin-4 in normal non-diabetic mice was not blunted by aging. We further showed that although there was slight difference in the glucose modulating mechanism of exendin-4 therapy in young and aged mice, the improved glucose control seemed uncorrelated with increased beta cell mass or insulin secretion

    Blood Glucose Levels Regulate Pancreatic β-Cell Proliferation during Experimentally-Induced and Spontaneous Autoimmune Diabetes in Mice

    Get PDF
    Type 1 diabetes mellitus is caused by immune-mediated destruction of pancreatic beta-cells leading to insulin deficiency, impaired intermediary metabolism, and elevated blood glucose concentrations. While at autoimmune diabetes onset a limited number of beta-cells persist, the cells' regenerative potential and its regulation have remained largely unexplored. Using two mouse autoimmune diabetes models, this study examined the proliferation of pancreatic islet ss-cells and other endocrine and non-endocrine subsets, and the factors regulating that proliferation.We adapted multi-parameter flow cytometry techniques (including DNA-content measurements and 5'-bromo-2'-deoxyuridine [BrdU] incorporation) to study pancreatic islet single cell suspensions. These studies demonstrate that beta-cell proliferation rapidly increases at diabetes onset, and that this proliferation is closely correlated with the diabetic animals' elevated blood glucose levels. For instance, we show that when normoglycemia is restored by exogenous insulin or islet transplantation, the beta-cell proliferation rate returns towards low levels found in control animals, yet surges when hyperglycemia recurs. In contrast, other-than-ss endocrine islet cells did not exhibit the same glucose-dependent proliferative responses. Rather, disease-associated alterations of BrdU-incorporation rates of delta-cells (minor decrease), and non-endocrine islet cells (slight increase) were not affected by blood glucose levels, or were inversely related to glycemia control after diabetes onset (alpha-cells).We conclude that murine beta-cells' ability to proliferate in response to metabolic need (i.e. rising blood glucose concentrations) is remarkably well preserved during severe, chronic beta-cell autoimmunity. These data suggest that timely control of the destructive immune response after disease manifestation could allow spontaneous regeneration of sufficient beta-cell mass to restore normal glucose homeostasis

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)
    corecore