102 research outputs found

    Lung cancer screening in 2008: A review and update

    Get PDF
    SummaryThis article discusses the strengths and weaknesses of using sputum cytology, plain chest radiograph and computerized tomography (CT) as screening modalities for lung cancer and provides recommendations for screening

    Audit of the autoantibody test, EarlyCDT®-Lung, in 1600 patients: An evaluation of its performance in routine clinical practice

    Get PDF
    ObjectivesEarlyCDT®-Lung may enhance detection of early stage lung cancer by aiding physicians in assessing high-risk patients through measurement of biological markers (i.e., autoantibodies). The test's performance characteristics in routine clinical practice were evaluated by auditing clinical outcomes of 1613 US patients deemed at high risk for lung cancer by their physician, who ordered the EarlyCDT-Lung test for their patient.MethodsClinical outcomes for all 1613 patients who provided HIPAA authorization are reported. Clinical data were collected from each patient's treating physician. Pathology reports when available were reviewed for diagnostic classification. Staging was assessed on histology, otherwise on imaging.ResultsSix month follow-up for the positives/negatives was 99%/93%. Sixty-one patients (4%) were identified with lung cancer, 25 of whom tested positive by EarlyCDT-Lung (sensitivity = 41%). A positive EarlyCDT-Lung test on the current panel was associated with a 5.4-fold increase in lung cancer incidence versus a negative. Importantly, 57% (8/14) of non-small cell lung cancers detected as positive (where stage was known) were stage I or II.ConclusionsEarlyCDT-Lung has been extensively tested and validated in case–control settings and has now been shown in this audit to perform in routine clinical practice as predicted. EarlyCDT-Lung may be a complementary tool to CT for detection of early lung cancer

    INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research suggests the therapeutic cancer vaccine L-BLP25 potentially provides a survival benefit in patients with locally advanced unresectable stage III non-small cell lung carcinoma (NSCLC). These promising findings prompted the phase III study, INSPIRE, in patients of East-Asian ethnicity. East-Asian ethnicity is an independent favourable prognostic factor for survival in NSCLC. The favourable prognosis is most likely due to a higher incidence of EGFR mutations among this patient population.</p> <p>Methods/design</p> <p>The primary objective of the INSPIRE study is to assess the treatment effect of L-BLP25 plus best supportive care (BSC), as compared to placebo plus BSC, on overall survival time in East-Asian patients with unresectable stage III NSCLC and either documented stable disease or an objective response according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria following primary chemoradiotherapy. Those in the L-BLP25 arm will receive a single intravenous infusion of cyclophosphamide (300 mg/m<sup>2</sup>) 3 days before the first L-BLP25 vaccination, with a corresponding intravenous infusion of saline to be given in the control arm. A primary treatment phase of 8 subcutaneous vaccinations of L-BLP25 930 μg or placebo at weekly intervals will be followed by a maintenance treatment phase of 6-weekly vaccinations continued until disease progression or discontinuation from the study.</p> <p>Discussion</p> <p>The ongoing INSPIRE study is the first large study of a therapeutic cancer vaccine specifically in an East-Asian population. It evaluates the potential of maintenance therapy with L-BLP25 to prolong survival in East-Asian patients with stage III NSCLC where there are limited treatment options currently available.</p> <p>Study number</p> <p>EMR 63325-012</p> <p>Trial Registration</p> <p>Clinicaltrials.gov reference: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01015443">NCT01015443</a></p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The New Official Journal of the IASLC

    No full text

    Screening for Lung Cancer: No Longer a Taboo Subject

    No full text

    State of the Journal: 2011

    No full text

    Electronic Updates for JTO Readers

    No full text

    Status of Journal of Thoracic Oncology in 2011

    No full text

    State of the Journal

    Get PDF
    corecore