5 research outputs found
Table_2_Estimating mortality and disability in Peru before the COVID-19 pandemic: a systematic analysis from the Global Burden of the Disease Study 2019.xlsx
BackgroundEstimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru’s healthcare system performance.MethodsUsing estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region.ResultsThe Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8–70.3) to 80.3 (77.2–83.2) years. This increase was driven by the decline in under-5 mortality (−80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5–10.1) and reached 7.5 million (6.1–9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region.ConclusionIn the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.</p
Image_1_Estimating mortality and disability in Peru before the COVID-19 pandemic: a systematic analysis from the Global Burden of the Disease Study 2019.pdf
BackgroundEstimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru’s healthcare system performance.MethodsUsing estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region.ResultsThe Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8–70.3) to 80.3 (77.2–83.2) years. This increase was driven by the decline in under-5 mortality (−80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5–10.1) and reached 7.5 million (6.1–9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region.ConclusionIn the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.</p
Table_1_Estimating mortality and disability in Peru before the COVID-19 pandemic: a systematic analysis from the Global Burden of the Disease Study 2019.docx
BackgroundEstimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru’s healthcare system performance.MethodsUsing estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region.ResultsThe Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8–70.3) to 80.3 (77.2–83.2) years. This increase was driven by the decline in under-5 mortality (−80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5–10.1) and reached 7.5 million (6.1–9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region.ConclusionIn the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.</p
Global, regional, and national age-sex-specific burden of diarrhoeal diseases, their risk factors, and aetiologies, 1990–2021, for 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2021
Background: Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021. Methods: We used the Cause of Death Ensemble modelling strategy to analyse vital registration data, verbal autopsy data, mortality surveillance data, and minimally invasive tissue sampling data. We used DisMod-MR (version 2.1), a Bayesian meta-regression tool, to analyse incidence and prevalence data identified via systematic reviews, population-based surveys, and claims and inpatient data. We calculated diarrhoeal disability-adjusted life-years (DALYs) as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for each location, year, and age–sex group. For aetiology estimation, we used a counterfactual approach to quantify population-attributable fractions (PAFs). Additionally, we estimated the diarrhoeal disease burden attributable to the independent effects of risk factors using the comparative risk assessment framework. Findings: In 2021, diarrhoeal diseases caused an estimated 1·17 million (95% uncertainty interval 0·793–1·62) deaths globally, representing a 60·3% (50·6–69·0) decrease since 1990 (2·93 million [2·31–3·73] deaths). The most pronounced decline was in children younger than 5 years, with a 79·2% (72·4–84·6) decrease in diarrhoeal deaths. Global YLLs also decreased substantially, from 186 million (147–221) in 1990 to 51·4 million (39·9–65·9) in 2021. In 2021, an estimated 59·0 million (47·2–73·2) DALYs were attributable to diarrhoeal diseases globally, with 30·9 million (23·1–42·0) of these affecting children younger than 5 years. Leading risk factors for diarrhoeal DALYs included low birthweight and short gestation in the neonatal age groups, child growth failure in children aged between 1–5 months and 2–4 years, and unsafe water and poor sanitation in older children and adults. We estimated that the removal of all evaluated diarrhoeal risk factors would reduce global DALYs from 59·0 million (47·2–73·2) to 4·99 million (1·99–10·0) among all ages combined. Globally in 2021, rotavirus was the predominant cause of diarrhoeal deaths across all ages, with a PAF of 15·2% (11·4–20·1), followed by norovirus at 10·6% (2·3–17·0) and Cryptosporidium spp at 10·2% (7·03–14·3). In children younger than 5 years, the fatal PAF of rotavirus was 35·2% (28·7–43·0), followed by Shigella spp at 24·0% (15·2–37·9) and adenovirus at 23·8% (14·8–36·3). Other pathogens with a fatal PAF greater than 10% in children younger than 5 years included Cryptosporidium spp, typical enteropathogenic Escherichia coli, and enterotoxigenic E coli producing heat-stable toxin. Interpretation: The substantial decline in the global burden of diarrhoeal diseases since 1990, particularly in children younger than 5 years, supports the effectiveness of health interventions such as oral rehydration therapy, enhanced water, sanitation, and hygiene (WASH) infrastructure, and the introduction and scale-up of rotavirus vaccination. Targeted interventions and preventive measures against key risk factors and pathogens could further reduce this burden. Continued investment in the development and distribution of vaccines for leading pathogens remains crucial. Funding: Bill & Melinda Gates Foundation.</p
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
