6 research outputs found

    Role of strontium cations in ZSM-5 zeolite in the methanol-to-hydrocarbons reaction

    Get PDF
    The selectivity of the methanol-to-hydrocarbons (MTH) reaction can be tuned by modifying zeolite catalysts with alkaline earth metals, which typically increase propylene selectivity and catalyst stability. Here we employed Sr2+ as its higher atomic number in comparison to the zeolite T atoms facilitates characterization by scanning transmission electron microscopy and operando X-ray absorption spectroscopy. Sr2+ dispersed in the ZSM-5 micropores coordinates water, methanol, and dimethyl ether during the MTH reaction. Complementary characterization with nuclear magnetic resonance spectroscopy, thermogravimetric analysis combined with mass spectrometry, operando infrared spectroscopy, and X-ray diffraction points to the retention of substantially more adsorbates during the MTH reaction in comparison to Sr-free zeolites. Our findings support the notion that alkaline earth metals modify the porous reaction environment such that the olefin cycle is favored over the aromatic cycle in the MTH, explaining the increased propylene yield and lower deactivation rate

    Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals

    Get PDF
    The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase

    Optical Properties of Nanocomposites

    No full text
    corecore