58 research outputs found

    Extracellular Vesicles as Mediators of Cellular Cross Talk in the Lung Microenvironment

    Get PDF
    The human lung is a complex tissue subdivided into several regions that differ in size, function, and resident cell types. Despite years of intensive research, we still do not fully understand the cross talk between these different regions and diverse cell populations in the lung and how this is altered in the development of chronic respiratory disease. The discovery of extracellular vesicles (EVs), small membrane vesicles released from cells for intercellular communication, has added another layer of complexity to cellular cross talk in the complex lung microenvironment. EVs from patients with chronic obstructive pulmonary disease, asthma, or sarcoidosis have been shown to carry microRNAs, proteins, and lipids that may contribute to inflammation or tissue degeneration. Here, we summarize the contribution of these small vesicles in the interplay of several different cell types in the lung microenvironment, with a focus on the development of chronic respiratory diseases. Although there are already many studies demonstrating the adverse effects of EVs in the diseased lung, we still have substantial knowledge gaps regarding the concrete role of EV involvement in lung disease, which should be addressed in future studies

    Inhibition of neutrophil apoptosis by PAI-1

    Get PDF
    Increased circulating and tissue levels of plasminogen activator inhibitor 1 (PAI-1) are often present in severe inflammatory states associated with neutrophil activation and accumulation and correlate with poor clinical outcome from many of these conditions. The mechanisms by which PAI-1 contributes to inflammation have not been fully delineated. In the present experiments, we found that addition of PAI-1 to neutrophil cultures diminished the rate of spontaneous and TNFrelated apoptosis-inducing ligand-induced apoptotic cell death. The effects of PAI-1 on cell viability were associated with activation of antiapoptotic signaling pathways, including upregulation of PKB/Akt, Mcl-1, and Bcl-xL. Although urokinase-plasminogen activator receptor, lipoprotein receptor-related protein, and vitronectin are primary ligands for PAI-1, these molecules were not involved in mediating its antiapoptotic properties. In contrast, blocking pertussis toxin-sensitive G protein-coupled receptors and selective inhibition of phosphatidylinositide 3-kinase reversed the ability of PAI-1 to extend neutrophil viability. The antiapoptotic effects of PAI-1 were also evident under in vivo conditions during LPS-induced acute lung injury, where enhanced apoptosis was present among neutrophils accumulating in the lungs of PAI-1-/- compared with PAI-1+/+ mice. These results demonstrate a novel antiapoptotic role for PAI-1 that may contribute to its participation in neutrophil-associated inflammatory responses. © 2011 the American Physiological Society

    Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma

    Get PDF
    Glioblastoma, also known as glioblastoma multiforme, is the most common and deadliest form of high-grade malignant brain tumors with limited available treatments. Within the glioblastoma tumor microenvironment (TME), tumor cells, stromal cells, and infiltrating immune cells continuously interact and exchange signals through various secreted factors including cytokines, chemokines, growth factors, and metabolites. Simultaneously, they dynamically reprogram their metabolism according to environmental energy demands such as hypoxia and neo-vascularization. Such metabolic reprogramming can determine fates and functions of tumor cells as well as immune cells. Ultimately, glioma cells in the TME transform immune cells to suppress anti-tumor immune cells such as T, natural killer (NK) cells, and dendritic cells (DC), and evade immune surveillance, and even to promote angiogenesis and tumor metastasis. Glioma-associated microglia/macrophages (GAMM) and myeloid-derived suppressor cells (MDSC) are most abundantly recruited and expanded myeloid lineage cells in glioblastoma TME and mainly lead to immunosuppression. In this review, of myeloid cells we will focus on MDSC as an important driver to induce immunosuppression in glioblastoma. Here, we review current literature on immunosuppressive functions and metabolic reprogramming of MDSCs in glioblastoma and discuss their metabolic pathways as potential therapeutic targets to improve current incurable glioblastoma treatment

    Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. Common molecular drivers of lung cancer are mutations in receptor tyrosine kinases (RTKs) leading to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pro-growth, pro-survival signaling pathways. Myristoylated alanine rich C-kinase substrate (MARCKS) is a protein that has the ability to mitigate this signaling cascade by sequestering the target of PI3K, phosphatidylinositol (4,5)-bisphosphate (PIP2). As such, MARCKS has been implicated as a tumor suppressor, though there is some evidence that MARCKS may be tumor promoting in certain cancer types. Since the MARCKS function depends on its phosphorylation status, which impacts its subcellular location, MARCKS role in cancer may depend highly on the signaling context. Currently, the importance of MARCKS in lung cancer biology is limited. Thus, we investigated MARCKS in both clinical specimens and cell culture models. Immunohistochemistry scoring of MARCKS protein expression in a diverse lung tumor tissue array revealed that the majority of squamous cell carcinomas stained positive for MARCKS while other histologies, such as adenocarcinomas, had lower levels. To study the importance of MARCKS in lung cancer biology, we used inducible overexpression of wild-type (WT) and non-phosphorylatable (NP)-MARCKS in A549 lung cancer cells that had a low level of endogenous MARCKS. We found that NP-MARCKS expression, but not WT-MARCKS, enhanced the radiosensitivity of A549 cells in part by inhibiting DNA repair as evidenced by prolonged radiation-induced DNA double strand breaks. We confirmed the importance of MARCKS phosphorylation status by treating several lung cancer cell lines with a peptide mimetic of the phosphorylation domain, the effector domain (ED), which effectively attenuated cell growth as measured by cell index. Thus, the MARCKS ED appears to be an important target for lung cancer therapeutic development

    Altered sphingolipid pathway in SARS-CoV-2 infected human lung tissue

    Get PDF
    IntroductionThe SARS-CoV-2 mediated COVID-19 pandemic has impacted millions worldwide. Hyper-inflammatory processes, including cytokine storm, contribute to long-standing tissue injury and damage in COVID-19. The metabolism of sphingolipids as regulators of cell survival, differentiation, and proliferation has been implicated in inflammatory signaling and cytokine responses. Sphingosine-kinase-1 (SK1) and ceramide-synthase-2 (CERS2) generate metabolites that regulate the anti- and pro-apoptotic processes, respectively. Alterations in SK1 and CERS2 expression may contribute to the inflammation and tissue damage during COVID-19. The central objective of this study is to evaluate structural changes in the lung post-SARS-CoV-2 infection and to investigate whether the sphingolipid rheostat is altered in response to SARS-CoV-2 infection.MethodsCentral and peripheral lung tissues from COVID-19+ or control autopsies and resected lung tissue from COVID-19 convalescents were subjected to histologic evaluation of airspace and collagen deposisiton, and immunohistochemical evaluation of SK1 and CERS2.ResultsHere, we report significant reduction in air space and increase in collagen deposition in lung autopsy tissues from patients who died from COVID-19 (COVID-19+) and COVID-19 convalescent individuals. SK1 expression increased in the lungs of COVID-19+ autopsies and COVID-19 convalescent lung tissue compared to controls and was mostly associated with Type II pneumocytes and alveolar macrophages. No significant difference in CERS2 expression was noted. SARS-CoV-2 infection upregulates SK1 and increases the ratio of SK1 to CERS2 expression in lung tissues of COVID-19 autopsies and COVID-19 convalescents.DiscussionThese data suggest an alteration in the sphingolipid rheostat in lung tissue during COVID-19, suggesting a potential contribution to the inflammation and tissue damage associated with viral infection

    The case for well-conducted experiments to validate statistical protocols for 2D gels: different pre-processing = different lists of significant proteins

    No full text
    Abstract Background The proteomics literature has seen a proliferation of publications that seek to apply the rapidly improving technology of 2D gels to study various biological systems. However, there is a dearth of systematic studies that have investigated appropriate statistical approaches to analyse the data from these experiments. Results Comparison of the effects of statistical pre-processing on the results of two sample t-tests suggests that the results of 2D gel experiments and by extension the conclusions derived from these experiments are not independent of the statistical protocol used. Conclusions This study suggests that there is a need for well-conducted validation studies to establish optimal statistical techniques to be used on such data sets.</p

    Heme oxygenase-1 expression in disease states.

    No full text
    Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functions associated with HO-1 are attributable to one or more of its degradation products. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli including heme and this inducible nature of HO-1 signifies its importance in several pathophysiological disease states. The beneficial role of HO-1 has been implicated in several clinically relevant disease states involving multiple organ systems as well as significant biological processes such as ischemia-reperfusion injury, inflammation/immune dysfunction and transplantation. HO-1 has thus emerged as a key target molecule with therapeutic implications
    • …
    corecore